差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录 前一修订版
后一修订版
前一修订版
上一修订版 两侧同时换到之后的修订记录
contest_board_dds [2022/06/25 17:54]
gongyu [2. DDS核心模块]
contest_board_dds [2022/06/25 17:57]
gongyu [OLED显示模块]
行 93: 行 93:
 从图中可以看出,DDS控制模块根据旋转编码器模块的输入信号调节频率控制字、切换波形,输出一定频率的方波、三角波、锯齿波或正弦波数据至DAC。同时,DDS控制模块还会将当前波形信息和频率信息输出给OLED模块用于显示。四种波形的产生使用同一个相位累加寄存器,如下图所示,相位累加寄存器本质上是一个不断累加的计数器,单次累加的幅度是频率控制字,频率控制字由旋转编码器调节,当旋转编码器顺时针转动时增大频率控制字,当旋转编码器逆时针转动时减小频率控制字。接下来分别介绍四种波形的原理。 从图中可以看出,DDS控制模块根据旋转编码器模块的输入信号调节频率控制字、切换波形,输出一定频率的方波、三角波、锯齿波或正弦波数据至DAC。同时,DDS控制模块还会将当前波形信息和频率信息输出给OLED模块用于显示。四种波形的产生使用同一个相位累加寄存器,如下图所示,相位累加寄存器本质上是一个不断累加的计数器,单次累加的幅度是频率控制字,频率控制字由旋转编码器调节,当旋转编码器顺时针转动时增大频率控制字,当旋转编码器逆时针转动时减小频率控制字。接下来分别介绍四种波形的原理。
  
-(1)方波 +  - 方波 ​取相位累加寄存器的最高位作为判断条件,当最高位为逻辑1,则对DAC的输入赋值10’h3ff;当最高位为逻辑0,则则对DAC的输入赋值10’h000,从而实现了方波波形。 
-取相位累加寄存器的最高位作为判断条件,当最高位为逻辑1,则对DAC的输入赋值10’h3ff;当最高位为逻辑0,则则对DAC的输入赋值10’h000,从而实现了方波波形。 +  ​- ​锯齿波 ​取相位累加寄存器的高十位直接作为DAC的输入,随着相位累加寄存器不断累加,DAC的输入也周期性地以锯齿波形状循环。 
-(2)锯齿波 +  ​- ​三角波 ​取相位累加寄存器的最高位作为判断条件,当最高位为逻辑1,则将相位累加寄存器的13到22位直接作为DAC数据的输入;当最高位为逻辑0,则将相位累加寄存器的13到22位取反后作为DAC数据的输入。 
-取相位累加寄存器的高十位直接作为DAC的输入,随着相位累加寄存器不断累加,DAC的输入也周期性地以锯齿波形状循环。 +  ​- ​正弦波 ​与其它三种波形不同,正弦波不能直接用取相位累加寄存器作为DAC的输入,需要将相位累加寄存器的高8位作为正弦波表的地址输入,这样的话,就实现了在一个周期内以一定间隔读出正弦波表内的数据作为DAC的输入。
-(3)三角波 +
-取相位累加寄存器的最高位作为判断条件,当最高位为逻辑1,则将相位累加寄存器的13到22位直接作为DAC数据的输入;当最高位为逻辑0,则将相位累加寄存器的13到22位取反后作为DAC数据的输入。 +
-(4)正弦波 +
- +
-与其它三种波形不同,正弦波不能直接用取相位累加寄存器作为DAC的输入,需要将相位累加寄存器的高8位作为正弦波表的地址输入,这样的话,就实现了在一个周期内以一定间隔读出正弦波表内的数据作为DAC的输入。+
  
 下面是DDS的主代码,可以选择输出的波形以及相应的频率 下面是DDS的主代码,可以选择输出的波形以及相应的频率
行 581: 行 576:
 </​code>​ </​code>​
  
-### OLED显示模块+### 5. OLED显示模块
 这是通过SPI总线方式来驱动128*64分辨率的OLED显示屏显示相应信息的逻辑代码 这是通过SPI总线方式来驱动128*64分辨率的OLED显示屏显示相应信息的逻辑代码