跳到主要内容

4.4 实验原理

4.4.1 旋转编码器介绍

旋转编码器(rotary encoder)也称为轴编码器,是将旋转位置或旋转量转换成模拟或数字信号的机电设备。旋转编码器用在许多需要精确旋转位置及速度的场合,如工业控制、机器人技术、专用镜头、电脑输入设备(如鼠标及轨迹球)等。

旋转编码器以码盘刻孔方式不同分为:绝对式和增量式两类。

  • 绝对式编码器:具有多个不同二进制权重的代码环,每个不同角度产生一个独特的数字代码,表示编码器的绝对位置
  • 增量式编码器:旋转过程中提供周期性输出,不能定位绝对位置,只能用于感知运动方向和增量

STEP BaseBoard V4.0底板上集成的旋转编码器就是机械增量式的。

4.4.2 旋转编码器连接

STEP BaseBoard V4.0底板上旋转编码器的电路图如下:

alt text
旋转编码器电路

我们使用的旋转编码器为EC11系列的,支持按动开关,共有5个管脚,1、2管脚支持按动开关,就像我们之前用到的独立按键连接方式,3、4、5管脚支持旋转编码,4脚为公共端,3、5管脚分别为旋转编码器的A、B相输出,如上图所示,我们给4脚接地,3、5管脚则需要接上拉电阻,同时为了降低输出脉冲信号的抖动干扰,我们有增加了电容到地做硬件去抖。

4.4.3 旋转编码器驱动设计

alt text

上图是机械增量式旋转编码器的原理示意图,中间圆形齿轮连接到旋转编码器的公共端4管脚,STEP BaseBoard V4.0底板上我们将之接地处理,A、B两个触点连接到旋转编码器的A、B相输出端3、5管脚,当进行旋转操作时,A、B触点会先后接触和错开圆形齿轮,从而导致A、B相输出信号产生相位不同的脉冲信号:

  • 顺时针旋转时,A触点超前于B触点接触和错开圆形齿轮,A信号脉冲相位超前
  • 逆时针旋转时,B触点超前于A触点接触和错开圆形齿轮,B信号脉冲相位超前
alt text
顺时针旋转时序
alt text
逆时针旋转时序

根据时序图可以看出旋转编码器顺时针或逆时针旋转时,A相信号超前或滞后B相信号,FPGA接收到旋转编码器的A、B信号时,可以根据A、B的状态组合判定编码器的旋转方向。 程序设计中我们可以对A、B信号检测,检测A信号的边沿及B信号的状态,

  • 当A信号上升沿时B信号为低电平,或当A信号下降沿时B信号为高电平,证明当前编码器为顺时针转动
  • 当A信号上升沿时B信号为高电平,或当A信号下降沿时B信号为低电平,证明当前编码器为逆时针转动

以上就是我们旋转编码器驱动设计的总体思路,下面我们就通过编程来实现它。

前面电路连接部分我们使用了两个电容对A、B信号作去抖处理,可以起到一定的效果,为了驱动更加稳定,我们在程序中再简单处理一下,先对系统时钟分频得到2KHz的时钟,然后在2KHz时钟的节拍下对A、B信号采样,三级锁存消除亚稳态

对A信号采样程序实现如下(对B信号一样):

reg key_a_r,key_a_r1,key_a_r2;
//消除亚稳态
always@(posedge clk_500us) begin
key_a_r <= key_a;
key_a_r1 <= key_a_r;
key_a_r2 <= key_a_r1;
end

然后简单去抖处理程序实现如下(对B信号一样):

reg A_state;
//简单去抖动处理
always@(key_a_r1 or key_a_r2) begin
case({key_a_r1,key_a_r2})
2'b11: A_state <= 1'b1;
2'b00: A_state <= 1'b0;
default: A_state <= A_state;
endcase
end

检测A信号的边沿程序实现如下:

reg A_state_r,A_state_r1;
//对A_state信号进行边沿检测
always@(posedge clk) begin
A_state_r <= A_state;
A_state_r1 <= A_state_r;
end

wire A_pos = (!A_state_r1) && A_state_r;
wire A_neg = A_state_r1 && (!A_state_r);

最后根据A信号边沿与B信号的状态组合判定旋转的信息,

逆时针旋转脉冲输出程序实现如下:

//当A的上升沿伴随B的高电平或当A的下降沿伴随B的低电平 为向左旋转
always@(posedge clk or negedge rst_n) begin
if(!rst_n) L_pulse <= 1'b0;
else if((A_pos&&B_state)||(A_neg&&(!B_state))) L_pulse <= 1'b1;
else L_pulse <= 1'b0;
end

//当A的上升沿伴随B的低电平或当A的下降沿伴随B的高电平 为向右旋转
always@(posedge clk or negedge rst_n) begin
if(!rst_n) R_pulse <= 1'b0;
else if((A_pos&&(!B_state))||(A_neg&&B_state)) R_pulse <= 1'b1;
else R_pulse <= 1'b0;
end

所以通过上面程序最终实现了左旋右旋的脉冲输出,脉冲的脉宽等于系统时钟的周期。

4.4.4 系统总体实现

回顾旋转调节系统设计框架,刚刚我们已经学习完成了旋转编码器的驱动设计,在基础数字电路实验部分我们已经掌握了FPGA驱动独立显示数码管的原理及方法, 模块通过一个4位的输入传递要显示的数值,通过9位的输出控制数码管显示该数值,这里我们不再重复,还需要设计一个模块,通过旋转编码器模块脉冲输出控制变量在0~99范围内加减变化。 关于BCD码在基础数字电路实验部分已经接触过,BCD码(Binarycoded Decimal),是用4位二进制码的组合代表十进制数的码制方法,这样显示更符合人的阅读习惯,所以BCD数值变化要求满9进1。

脉冲控制变量在0~99范围变化,左旋减,右旋加,程序实现如下

//key_pulse transfer to seg_data
always@(posedge clk or negedge rst_n) begin
if(!rst_n) begin
seg_data <= 8'h50;
end else begin
if(L_pulse) begin
if(seg_data[3:0]==4'd0) begin
seg_data[3:0] <= 4'd9;
if(seg_data[7:4]==4'd0) seg_data[7:4] <= 4'd9;
else seg_data[7:4] <= seg_data[7:4] - 1'b1;
end else seg_data[3:0] <= seg_data[3:0] - 1'b1;
end else if(R_pulse) begin
if(seg_data[3:0]==4'd9) begin
seg_data[3:0] <= 4'd0;
if(seg_data[7:4]==4'd9) seg_data[7:4] <= 4'd0;
else seg_data[7:4] <= seg_data[7:4] + 1'b1;
end else seg_data[3:0] <= seg_data[3:0] + 1'b1;
end else begin
seg_data <= seg_data;
end
end
end

综合后的设计框图如下:

alt text
RTL设计框图