
1

Lecture #2: Verilog HDL

Kunle Olukotun

Stanford EE183

January 10, 2003

Why Verilog?
• Why use an HDL?

– Describe complex designs (millions of gates)
– Input to synthesis tools (synthesizable subset)
– Design exploration with simulation

• Why not use a general purpose language
– Support for structure and instantiation (objects?)
– Support for describing bit-level behavior
– Support for timing
– Support for concurrency

• Verilog vs. VHDL
– Verilog is relatively simple and close to C
– VHDL is complex and close to Ada
– Verilog has 60% of the world digital design market (larger share in

US)

• Verilog modeling range
– From gates to processor level
– We’ll focus on RTL (register transfer level)

2

EE183 Design Process

• Understand problem and generate block diagram
of solution (datapath control decomposition)

• Code block diagram in verilog

• Synthesize verilog

• Create verification script to test design

• Run static timing tool to make sure timing is met

• Design is mapped, placed, routed, and *.bit file is
created download to FPGA

Event Driven Simulation
• Verilog is really a language for modeling event-

driven systems
– Event : change in state

– Simulation starts at t = 0
– Processing events generates new events
– When all events at time t have been processed

simulation time advances to t+1
– Simulation stops when there are no more events in the

queue

•••
0 t t+1

•••Event
queue

Events

3

Modeling Structure: Modules
• The module is the basic building block in Verilog

– Modules can be interconnected to describe the structure
of your digital system

– Modules start with keyword module and end with
keyword endmodule

– Modules have ports for
interconnection with other modules

Module AND <port list>

 •
 •
 •

endmodule

Module CPU <port list>

 •
 •
 •

endmodule

Modeling Structure: Ports

• Module Ports
– Similar to pins on a chip
– Provide a way to communicate with outside world
– Ports can be input, output or inout

i0

i1
o

Module AND (i0, i1, o);
input i0, i1;
output 0;

 •
 •
 •

endmodule

4

Modeling Structure
• Module instances

– Verilog models consist of a hierarchy of module
instances

– In C++ speak: modules are classes and instances are
objects

AND3

i0

i1

i2
o

Module AND3 (i0, i1, i2, o);
input i0, i1, i2��;
output 0;

wire temp

AND a0 (i0, i1, temp);
AND a1 (i2, temp, 0);

endmodule

Logic Values

• 0: zero, logic low, false, ground

• 1: one, logic high, power

• X: unknown

• Z: high impedance, unconnected, tri-state

5

Data Types

• Nets
– Nets are physical connections between devices
– Nets always reflect the logic value of the driving device
– Many types of nets, but all we care about is wire

• Registers
– Implicit storage – unless variable of this type is

modified it retains previously assigned value
– Does not necessarily imply a hardware register
– Register type is denoted by reg
– int is also used

Variable Declaration
• Declaring a net

wire [<range>] <net!_name> [<net_name>*];
Range is specified as [MSb:LSb]. Default is one bit wide

• Declaring a register
reg [<range>] <reg!_name> [<reg_name>*];

• Declaring memory
reg [<range>] <memory!_name> [<start_addr> :

<end_addr>];

• Examples
reg r; // 1-bit reg variable
wire w1, w2; // 2 1-bit wire variable
reg [7:0] vreg; // 8-bit register
reg [7:0] memory [0:1023]; a 1 KB memory

6

Ports and Data Types
• Correct data types for ports

inout

input output
net net

net

net

Register/net register/net

Module

module synchronizer (in, out, clk);
 parameter SIZE = 1;

 input [SIZE-1:0] in
 input clk;
 output [SIZE-1:0] out;

 wire [SIZE-1:0] x;

 dff #(SIZE) dff_1(.d(in[SIZE-1:0]), .clk(clk), .q(x[SIZE-
1:0]));

 dff #(SIZE) dff_2(.d(x[SIZE-1:0]), .clk(clk), .q(out[SIZE-
1:0]));

endmodule

Example Module
Buses are created as

vectors. For n bit bus use
convention: [n-1:0]

All Input and Output ports
must be declared as such.

Can also be “inout” for tri-
state but rarely used

Instantiation: “dff” is name of module
“#(SIZE)” overwrites parameters

“.port_in_called_module(signal_in_this_model)”

All internal variables must be
explicitly declared.

“wire” is one type of net used to
connect things

7

Modeling Behavior

• Behavioral Modeling
Describes functionality of a module

• Module Behavior
Collection of concurrent processes

1. Continuous assignments

2. Initial blocks

3. Always blocks

Verilog Operators

Arithmetic: +, = , *, /, %
Binary bitwise: ~, &, |, ^, ~^
Unary reduction: &, ~&, |, ~|, ^, ~^
Logical: !, &&, ||, ==, ===, !=, !==
 == returns x if any of the input bits is x

or z
 === compares xs and zs
Relational: <. >, <=, >+
Logical shift: >>, <<
Conditional: ?:
Concatenation: {}

8

Lexical Conventions

• The lexical conventions are close to the programming
language C++.

• Comments are designated by // to the end of a line or by /*
to */ across several lines.

• Keywords, e. g., module, are reserved and in all lower case
letters.

• The language is case sensitive, meaning upper and lower
case letters are different.

• Spaces are important in that they delimit tokens in the
language.

Number specification

• Numbers are specified in the traditional form of a series of
digits with or without a sign but also in the following form:

• <size><base format><number>
– where <size> contains decimal digits that specify the size of the constant

in the number of bits. The <size> is optional. The <base format> is the
single character ' followed by one of the following characters b, d, o and
h, which stand for binary, decimal, octal and hex, respectively. The
<number> part contains digits which are legal for the <base format>.
Some examples:

– 4'b0011 // 4-bit binary number 0011
– 5'd3 // 5-bit decimal number
– 32’hdeadbeef // 32 bit hexadecimal number

9

Bitwise/Logical Operators

• Bitwise operators operate on the bits of the operand or
operands.

– For example, the result of A & B is the AND of each corresponding bit
of A with B. Operating on an unknown (x) bit results in the expected
value. For example, the AND of an x with a FALSE is an FALSE. The
OR of an x with a TRUE is a TRUE.

• Operator Name
• ~ Bitwise negation
• & Bitwise AND
• | Bitwise OR
• ^ Bitwise XOR
• ~& Bitwise NAND
• ~| Bitwise NOR
• ~^ or ^~ Equivalence (Bitwise NOT XOR)

Miscellaneous Operators

• { , } Concatenation of nets
• Joins bits together with 2 or more comma-separated expressions, e, g.

{A[0], B[1:7]} concatenates the zeroth bit of A to bits
1 to 7 of B.

• << Shift left (Multiplication by power of 2)
• Vacated bit positions are filled with zeros, e. g., A = A << 2; shifts A

two bits to left with zero fill.

• >> Shift right (Division by power of 2)
• Vacated bit positions are filled with zeros.

• ?: Conditional (Creates a MUX)
• Assigns one of two values depending on the conditional expression.

E.g., A = C > D ? B+3 : B-2; means if C greater than D, the value of
A is B+3 otherwise B-2.

10

Unary Reduction Operators

• Unary reduction operators produce a single bit result from
applying the operator to all of the bits of the operand. For
example, &A will AND all the bits of A.

• Operator Name
• & AND reduction
• | OR reduction
• ^ XOR reduction
• ~& NAND reduction
• ~| NOR reduction
• ~^ XNOR reduction

• I have never used these, if you find a realistic application,
let me know… J

Relational Operators

• Relational operators compare two operands and return a
logical value, i. e., TRUE(1) or FALSE(0)—what do these
synthesize into?

• If any bit is unknown, the relation is ambiguous and the result is
unknown – should never happen!

Operator Name
> Greater than
>= Greater than or equal
< Less than
<= Less than or equal
== Logical equality
!= Logical inequality

11

Logical Operators

• Logical operators operate on logical operands and
return a logical value, i. e., TRUE(1) or FALSE(0).
– Used typically in if and while statements.

• Do not confuse logical operators with the bitwise Boolean
operators. For example , ! is a logical NOT and ~ is a bitwise
NOT. The first negates, e. g., !(5 == 6) is TRUE. The second
complements the bits, e. g., ~{1,0,1,1} is 0100.

– Operator Name
– ! Logical negation
– && Logical AND
– || Logical OR

Continuous Assignment
Continually drive wire variables
Used to model combinational logic or make connections

between wires
Module half_adder(x, y, s, c)

input x, y;
output s, c;

assign s = x ^ y;
assign c = x & y;

endmodule

Module adder_4(a, b, ci, s, co)
input [3:0] a, b;
input ci;
output [3:0]s;
output co;

assign {co, s} = a + b + ci;

endmodule

–Anytime right hand side
(RHS) changes, left hand
side (LHS) is updated

–LHS must be a “net”

12

Initial and Always
• Multiple statements per block

Procedural assignments
Timing control
control

• Initial blocks execute once
• at t = 0

• Always blocks execute continuously
• at t = 0 and repeatedly thereafter

initial
begin

 •
 •
 •

end

always
begin

 •
 •
 •

end

Procedural assignments
• Blocking assignment =

Regular assignment inside procedural block
Assignment takes place immediately
LHS must be a register

• Nonblocking assignment <=
Compute RHS
Assignment takes place at end of block
LHS must be a register

always
begin

A = B;
B = A;

end

always
begin

A <= B;
B <= A;

end

swap A and B

A = B, B= B

13

• We will only use them to define combinational
logic
– as a result, blocking (=) and nonblocking assignment

(<=) are the same

• Example:
reg out;
always @(in1 or in2)
begin
 out = in1 & in2;
end

Using Procedural Assignments

LHS must be of type reg
Does NOTNOT mean this is a DFF

All input signals must be in
sensitivity list (fully qualified)

Begin and End define a block
in Verilog

If-Else Conditional

• Just a combinational logic mux
• Every if must have matching else or state element will be

inferred—why?
always @(control or in1 or in2)
begin
 if (control == 1’b1) begin

 out = in1;
 end
 else begin
 out = in2;

 end
end

• Watch nestings—make life easy, always use begin…end

14

Case Statement Procedural
Assignment

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);
 output out;
 input i0, i1, i2, i3;
 input s1, s0;
 reg out;
 always @(s1 or s0 or i0 or i1 or i2 or i3)
 begin
 case ({s1, s0})
 2'b00: out = i0;
 2'b01: out = i1;
 2'b10: out = i2;
 2'b11: out = i3;
 default: out = 1'bx;
 endcase
 end
endmodule

X is don’t care
After initial synchronous reset

there should nevernever be any X’s in
your design

Make sure all 2^n cases are covered or
include a “default:” statement or else

state elements will be inferred

Note how all nets that are inputs to the
always block are specified in the
sensitivity list (fully qualified)

Loop Statements
• Repeat

• While

• For

i = 0;
repeat (10)
 begin

i = i + 1;
$display(“i = %d”, i);

 end

i = 0;
while (i < 10)
 begin

i = i + 1;
$display(“i = %d”, i);

 end

for (i = 0; i < 10; i = i + 1)
 begin

i = i + 1;
$display(“i = %d”, i);

 end

15

Verilog Coding Rules
• Coding rules eliminate strange simulation

behavior

– When modeling sequential logic, use nonblocking
assignments

– When modeling combinational logic with always
block, use blocking assignments. Make sure all RHS
variables in block appear in @ expression

– If you mix sequential and combinational logic within
the same always block use nonblocking assignments

– Don’t mix blocking and nonblocking assignments in
the same always block

– Don’t make assignments to same variable from more
than one always block

– Don’t make assignments using 0# delays

So how do I get D-FlipFlops?
• Use 183lib.v to instantiate them

– dff, dffr, dffre

• These are the onlyonly state elements (except for
CoreGen RAMs) allowed in your design

dff,
dffr,
dffre

Modules with
fully qualified
always blockswire

wire

FF Combinational logic (NS, O)

16

Dffre guts

// dffre: D flip-flop with active high enable and reset
// Parametrized width; default of 1
module dffre (d, en, r, clk, q);
 parameter WIDTH = 1;
 input en;
 input r;
 input clk;
 input [WIDTH-1:0] d;
 output [WIDTH-1:0] q;
 reg [WIDTH-1:0] q;
 always @ (posedge clk)
 if (r)
 q <= {WIDTH{1'b0}};
 else if (en)
 q <= d;
 else q <= q;
endmodule

Only change LHS on “posedge clk”
Note that if statement is missing an else

Replicator Operator.
How cute!! J

No Behavioral Code

• No “initial” statements
– Often used to reset/initialize design

• No system tasks
– “$” commands (ie, “$display()”)

• For both, use Xilinx simulator and scripts

17

Use Case Statement for FSM

• Instantiate state elements as dffX

• Put next state logic in always @() block
– Input is curstate (.q of dffX) and other inputs

– Output is nextstate which goes to .d of dffX

– Use combined case and if statements
• “If” good for synchronous resets and enables

• Synthesis tools auto-magically minimizes all
combinational logic.
– Three cheers for synthesis!! J

8-bit Counter
module counter_8 (clk, reset, en, cntr_q);
 input clk;
 input reset;
 input en;
 output [7:0] cntr_q;

 reg [7:0] cntr_d;
 wire [7:0] cntr_q;

 // Counter next state logic
 always @(cntr_q)
 begin
 cntr_d = cntr_q + 8'b1;
 end

 // Counter state elements
 dffre #(8) cntr_reg (.clk(clk), .r(reset), .en(en),

.d(cntr_d), .q(cntr_q));

Endmodule

18

CoreGen

• Tools ‡ Design Entry ‡ Core Generator
– Useful info appears in “language assistant”—Read it!

• Only use this for memories for now
– Do you need anything else??

• I really cannot think of anything now

• Caveat: Block Memory does not simulate
correctly with initial values.
– Must create gate netlist by completing synthesis and

implementation.
– Simulate by loading time_sim.edn into Simulator

Monday Jan 13

• Lab project #1

• The Game of Life

