Lecture #2: Verilog HDL

Kunle Olukotun
Stanford EE183
January 10, 2003

Why Verilog?
Why use an HDL?
— Describe complex designs (millions of gates)

— Input to synthesis tools (synthesizable subset)
— Design exploration with simulation

Why not use a general purpose language

— Support for structure and instantiation (objects?)
Support for describing bit-level behavior
Support for timing

— Support for concurrency
Verilog vs. VHDL

— Verilog is relatively simple and close to C

— VHDL is complex and close to Ada

— Verilog has 60% of the world digital design market (larger share in

us)

Verilog modeling range

— From gates to processor level

— We’ll focus on RTL (register transfer level)

EE183 Design Process

* Understand problem and generate block diagram
of solution (datapath control decomposition)

* Code block diagram in verilog

* Synthesize verilog

 Create verification script to test design

* Run static timing tool to make sure timing is met

» Design is mapped, placed, routed, and *.bit file is
created download to FPGA

Event Driven Simulation

* Verilog is really a language for modeling event-
driven systems
— Event : change in state

t t+1

0
Event||| oee IIIIII...

queue

Events

— Simulation starts att =0
— Processing events generates new events

— When all events at time ¢ have been processed
simulation time advances to ¢+/

— Simulation stops when there are no more events in the
queue

Modeling Structure: Modules
* The module is the basic building block in Verilog

— Modules can be interconnected to describe the structure
of your digital system

— Modules start with keyword module and end with

keyword endmodule
Module AND <port list> Module CPU <port list>
endmodule endmodule

Modeling Structure: Ports

* Module Ports
— Similar to pins on a chip
— Provide a way to communicate with outside world
— Ports can be input, output or inout

Module AND (iO, il, o);
input i0, il;

E output 0;
[0)
1)

endmodule

Modeling Structure

* Module instances

— Verilog models consist of a hierarchy of module

instances
— In C++ speak: modules are classes and instances are
objects
AND3 Module AND3 (iO, il, i2, o);
input i0, il, i2[][];
i0 output 0;
i1 wire temp
i2 ° AND a0 (i0, il, temp);
AND al (i2, temp, 0);
endmodule

Logic Values

0: zero, logic low, false, ground
1: one, logic high, power
X: unknown

Z: high impedance, unconnected, tri-state

Data Types

* Nets
— Nets are physical connections between devices
— Nets always reflect the logic value of the driving device
— Many types of nets, but all we care about is wire
* Registers
— Implicit storage — unless variable of this type is
modified it retains previously assigned value
— Does not necessarily imply a hardware register
— Register type is denoted by reg
— int isalso used

Variable Declaration

Declaring a net
wire [<range>] <net name> [<net name>*];
Range is specified as [MSb:LSb] . Default is one bit wide

Declaring a register
reg [<range>] <reg name> [<reg name>*];

Declaring memory

reg [<range>] <memory name> [<start_ addr>:
<end addr>];

Examples

reg r; // l-bit reg variable

wire wl, w2; // 2 1-bit wire variable
reg [7:0] vreg; // 8-bit register

reg [7:0] memory [0:1023]; a 1 KB memory

Ports and Data Types
» Correct data types for ports

Module
Register/net —}p net register/net —[}—p net
input output
net

.f. inout
I#

net

Example Module

Buses are created as

ctors. For n bit bus use
Ciﬁsgrﬁ/ention: [n-1:0]

module synchronizer (in, o
parameter SIZE = 1;

All Input and Output ports
input [sT E—l :0] in must be declared as such.
. Can also be “inout” for tri-
input clk:

state but rarely used
output [SIZE-1:0] out;

All internal variables must be
explicitly declared.
wire [SIZE-1:0 H “wire” is one type of net used to

connect things

dff #(SIZE) dff_1(.d(in[SIZE-1:0]), .clk(clk), .q(x[SIZE-
1:01));

. 7 . r .
Instantiation: “dff” is name of module
“#(SIZE)” overwrites parameters
“port_in_called module(signal in_this model)”

endmodule

Modeling Behavior

 Behavioral Modeling

Describes functionality of a module

* Module Behavior

Collection of concurrent processes
1. Continuous assignments

2. Initial blocks

3. Always blocks

Verilog Operators

Arithmetic: +,=, *,/, %
Binary bitwise: ~, &, |, , ~"
Unary reduction: &, ~&, |, ~|, , ~"
Logical: |, &&, ||, ==, ===, |=, |==
== returns x if any of the input bits is x
or z

=== compares xs and zs
Relational: <. >, <=, >+
Logical shift: >>, <<
Conditional: ?:
Concatenation: {}

Lexical Conventions

 The lexical conventions are close to the programming
language C++.

» Comments are designated by // to the end of a line or by /*
to */ across several lines.

» Keywords, e. g., module, are reserved and in all lower case
letters.

» The language is case sensitive, meaning upper and lower
case letters are different.

* Spaces are important in that they delimit tokens in the
language.

Number specification

* Numbers are specified in the traditional form of a series of
digits with or without a sign but also in the following form:

o <size><base format><number>

— where <size> contains decimal digits that specify the size of the constant
in the number of bits. The <size> is optional. The <base format> is the
single character ' followed by one of the following characters b, d, o and
h, which stand for binary, decimal, octal and hex, respectively. The
<number> part contains digits which are legal for the <base format>.
Some examples:

— 4'b0011 //4-bit binary number 0011
— 5'd3 // 5-bit decimal number
— 32’hdeadbeef // 32 bit hexadecimal number

Bitwise/Logical Operators

 Bitwise operators operate on the bits of the operand or

operands.

— For example, the result of A & B is the AND of each corresponding bit
of A with B. Operating on an unknown (x) bit results in the expected
value. For example, the AND of an x with a FALSE is an FALSE. The
OR of an x with a TRUE is a TRUE.

» Operator Name

°* ~ Bitwise negation

- & Bitwise AND

o | Bitwise OR

o« N Bitwise XOR

.« ~& Bitwise NAND

o~ Bitwise NOR

o ~or~ Equivalence (Bitwise NOT XOR)

Miscellaneous Operators

* {, } Concatenation of nets
* Joins bits together with 2 or more comma-separated expressions, e, g.

{A[0], B[1:7]} concatenates the zeroth bit of A to bits
1to 7 of B.
¢+ << Shift left (Multiplication by power of 2)

* Vacated bit positions are filled with zeros, e. g., A = A << 2; shifts A
two bits to left with zero fill.

. >> Shift right (Division by power of 2)
» Vacated bit positions are filled with zeros.
e 7 Conditional (Creates a MUX)

» Assigns one of two values depending on the conditional expression.
E.g., A=C>D ? B+3 : B-2; means if C greater than D, the value of
A is B+3 otherwise B-2.

Unary Reduction Operators

+ Unary reduction operators produce a single bit result from
applying the operator to all of the bits of the operand. For
example, &A will AND all the bits of A.

» Operator Name

e & AND reduction
o OR reduction

o« A XOR reduction
« ~& NAND reduction
o~ NOR reduction
o AN XNOR reduction

» I have never used these, if you find a realistic application,
let me know... ©

Relational Operators

+ Relational operators compare two operands and return a
logical value, i. e., TRUE(1) or FALSE(0)—what do these
synthesize into?

 If any bit is unknown, the relation is ambiguous and the result is
unknown — should never happen!

Operator Name

> Greater than

>= Greater than or equal
< Less than

<= Less than or equal
= Logical equality

= Logical inequality

10

Logical Operators

» Logical operators operate on logical operands and
return a logical value, 1. e., TRUE(1) or FALSE(0).

— Used typically in if and while statements.

* Do not confuse logical operators with the bitwise Boolean
operators. For example , ! is a logical NOT and ~ is a bitwise
NOT. The first negates, e. g., !(5 == 6) is TRUE. The second
complements the bits, e. g., ~{1,0,1,1} is 0100.

— Operator Name

— | Logical negation
- && Logical AND

— || Logical OR

Continuous Assignment

Continually drive wire variables

Used to model combinational logic or make connections
between wires

M°‘:‘:‘;ith:1f;§dder("' ¥, s, ©) —Anytime right hand side
output s, c; (RHS) changes, left hand
s=x "y side (LHS) is updated
c=x &y —LHS must be a “net”

endmodule

Module adder_4(a, b, ci, s, co)
input [3:0] a, b;
input ci;
output [3:0]s;
output co;

{co, s} = a + b + ci;

endmodule

11

Initial and Always
* Multiple statements per block
Procedural assignments
Timing control
control

» Initial blocks execute once
. att =10

» Always blocks execute continuously

° at t = 0 and repeatedly thereafter
initial always
begin begin
end end

Procedural assignments

* Blocking assignment =
Regular assignment inside procedural block
Assignment takes place immediately
LHS must be a register

always

begin
A=B;| A=B,B=B
B = A;

end

» Nonblocking assignment <=

Compute RHS —
Assignment takes place at end of block begin
LHS must be a register IR

swap A and B

Using Procedural Assignments

* We will only use them to define combinational
logic
— as a result, blocking (=) and nonblocking assignment
(<=) are the same

[Example: LHS must be of type reg
Does NOT mean this is a DFF
reg ou
always] (inl or i All input signals must be in
. sensitivity list (fully qualified)
begin

out = in2;
end Begin and End define a block
in Verilog

If-Else Conditional

+ Just a combinational logic mux

» Every if must have matching else or state element will be
inferred—why?
always @(control or inl or in2)
begin
if (control == 1’bl) begin
out = inl;
end
else begin
out = in2;
end
end

» Watch nestings—make life easy, always use begin...end

13

Case Statement Procedural
Assignment

module mux4_to_1 (out, iO, il, i2, i3, sl, s0);
output out;
input io0O, il, i2, i3;
input sl1, sO;

Note how all nets that are inputs to the
always block are specified in the

reg out; sensitivity list (fully qualified)
always @(sl1l or sO or i0 or i2 or 1i3)
begin
case ({sl1, s0}) Make sure all 2”n cases are covered or
2'b00: out = i0; include a “default:” statement or else
2'b01 t i1 ! state elements will be inferred
: out = ilj;

2'b10: out = i2;
2'bll: out = i3;
default: out = 1'bx

: Xis don’t care
endcase After initial synchronous reset
end there should never be any X’s in

endmodule your design

Loop Statements

* Repeat

i= 0;
repeat (10)
begin
i=1i+1;
$display(“i = %d”, i);
end

- While

i= 0;
while (i < 10)
begin
i=1i+1;
$display(“i = %d”, i);
end

+ For

for (i = 0; i < 10; i =i + 1)
begin

i=1i+1;

$display(“i = %d”, i);
end

Verilog Coding Rules

* Coding rules eliminate strange simulation
behavior

— When modeling sequential logic, use nonblocking
assignments

— When modeling combinational logic with always
block, use blocking assignments. Make sure all RHS
variables in block appear in (@ expression

— If you mix sequential and combinational logic within
the same always block use nonblocking assignments

— Don’t mix blocking and nonblocking assignments in
the same always block

So how do I get D-FlipFlops?

» Use 183lib.v to instantiate them
— dff, dffr, dffre

* These are the only state elements (except for
CoreGen RAMs) allowed in your design

FF Combinational logic (NS, O)

wire

wire

Dffre guts

// dffre: D flip-flop with active high enable and reset
// Parametrized width; default of 1
module dffre (d, en, 1, clk, q);

parameter WIDTH = 1;

input en;

input r;

input clk;

input [WIDTH-1:0] d;

output [WIDTH-1:0] q;

reg [WIDTH-1:0] q;

always @ (posedge clk
. ys @ (p ¢) Only change LHS on “posedge clk”
if (r) . e
Note that if statement is missing an else
q <= {WIDTH{1'00}};

else if (en)

q<=d; Replicator Operator.
elseq<=q; How cute!! ©
endmodule

No Behavioral Code

* No “initial” statements

— Often used to reset/initialize design

» No system tasks
— “$” commands (ie, “$display()”)

 For both, use Xilinx simulator and scripts

16

Use Case Statement for FSM

* Instantiate state elements as dffX

» Put next state logic in always @)() block

— Input is curstate (.q of dffX) and other inputs

— Output is nextstate which goes to .d of dffX

— Use combined case and if statements

* “If” good for synchronous resets and enables

* Synthesis tools auto-magically minimizes all

combinational logic.

— Three cheers for synthesis!! ©

8-bit Counter

module counter_8 (clk, reset, en, cntr_q);
input clk;
input reset;
input en;
output [7:0] cntr_q;

reg [7:0] cntr_d;
wire [7:0] cntr_q;

// Counter next state logic
always @(cntr_q)
begin

cntr_d = cntr_q + 8'bl;
end

// Counter state elements

dffre #(8) cntr_reg (.clk(clk), .r(reset), .en(en),
.d(cntr_d), .q(cntr_q));

Endmodule

CoreGen

* Tools = Design Entry = Core Generator
— Useful info appears in “language assistant”—Read it!
* Only use this for memories for now

— Do you need anything else??
¢ Ireally cannot think of anything now

» (Caveat: Block Memory does not simulate
correctly with initial values.

— Must create gate netlist by completing synthesis and
implementation.

— Simulate by loading time_sim.edn into Simulator

Monday Jan 13

» Lab project #1
» The Game of Life

18

