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Why Verilog?
• Why use an HDL?

– Describe complex designs (millions of gates)
– Input to synthesis tools (synthesizable subset)
– Design exploration with simulation

• Why not use a general purpose language
– Support for structure and instantiation (objects?)
– Support for describing bit-level behavior
– Support for timing
– Support for concurrency

• Verilog vs. VHDL
– Verilog is relatively simple and close to C
– VHDL is complex and close to Ada
– Verilog has 60% of the world digital design market (larger share in

US)

• Verilog modeling range
– From gates to processor level
– We’ll focus on RTL (register transfer level)
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EE183 Design Process

• Understand problem and generate block diagram
of solution (datapath control decomposition)

• Code block diagram in verilog

• Synthesize verilog

• Create verification script to test design

• Run static timing tool to make sure timing is met

• Design is mapped, placed, routed, and *.bit file is
created download to FPGA

Event Driven Simulation
• Verilog is really a language for  modeling event-

driven  systems
– Event : change in state

– Simulation starts at t = 0
– Processing events generates new events
– When all events at time t have been processed

simulation time advances to t+1
– Simulation stops when there are no more events in the

queue

•••
0 t  t+1

•••Event
queue

Events
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Modeling Structure: Modules
• The module is the basic building block in Verilog

– Modules can be interconnected to describe the structure
of your digital system

– Modules start with keyword module and end with
keyword endmodule

– Modules have ports for
interconnection with other modules

Module AND <port list>

        •
        •
        •

endmodule

Module CPU <port list>

        •
        •
        •

endmodule

Modeling Structure: Ports

• Module Ports
– Similar to pins on a chip
– Provide a way to communicate with outside world
– Ports can be input, output or inout

i0

i1
o

Module AND (i0, i1, o);
input  i0, i1;
output 0;

        •
        •
        •

endmodule
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Modeling Structure
• Module instances

– Verilog models consist of a hierarchy of module
instances

– In C++ speak: modules are classes and instances are
objects

AND3

i0

i1

i2
o

Module AND3 (i0, i1, i2, o);
input  i0, i1, i2��;
output 0;

wire temp

AND a0 (i0, i1, temp);
AND a1 (i2, temp, 0);

endmodule

Logic Values

• 0: zero, logic low, false, ground

• 1: one, logic high, power

• X: unknown

• Z: high impedance, unconnected, tri-state
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Data Types

• Nets
– Nets are physical connections between devices
– Nets always reflect the logic value of the driving device
– Many types of nets, but all we care about is wire

• Registers
– Implicit storage – unless variable of this type is

modified it retains previously assigned value
– Does not necessarily imply a hardware register
– Register type is denoted by reg
– int is also used

Variable Declaration
• Declaring a net

wire [<range>] <net!_name> [<net_name>*];
Range is specified as [MSb:LSb]. Default is one bit wide

• Declaring a register
reg [<range>] <reg!_name> [<reg_name>*];

• Declaring memory
reg [<range>] <memory!_name> [<start_addr> :

<end_addr>];

• Examples
reg r; // 1-bit reg variable
wire w1, w2; // 2 1-bit wire variable
reg [7:0] vreg; // 8-bit register
reg [7:0] memory [0:1023]; a 1 KB memory
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Ports and Data Types
• Correct data types for  ports

inout

input output
net net

net

net

Register/net register/net

Module

module synchronizer (in, out, clk);
  parameter SIZE = 1;

  input [SIZE-1:0] in
  input clk;
  output [SIZE-1:0] out;

  wire [SIZE-1:0] x;

  dff #(SIZE) dff_1(.d(in[SIZE-1:0]), .clk(clk), .q(x[SIZE-
1:0]));

  dff #(SIZE) dff_2(.d(x[SIZE-1:0]), .clk(clk), .q(out[SIZE-
1:0]));

endmodule

Example Module
Buses are created as

vectors. For n bit bus use
convention: [n-1:0]

All Input and Output ports
must be declared as such.

Can also be “inout” for tri-
state but rarely used

Instantiation: “dff” is name of module
“#(SIZE)” overwrites parameters

“.port_in_called_module(signal_in_this_model)”

All internal variables must be
explicitly declared.

“wire” is one type of net used to
connect things
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Modeling Behavior

• Behavioral Modeling
Describes functionality of a module

• Module Behavior
Collection of concurrent processes

1. Continuous assignments

2. Initial blocks

3. Always blocks

Verilog Operators

Arithmetic: +, = , *, /, %
Binary bitwise: ~, &, |, ^, ~^
Unary reduction: &, ~&, |, ~|, ^, ~^
Logical: !, &&, ||, ==, ===, !=, !==
               == returns x if any of the input bits is x

or z
               === compares xs and zs
Relational: <. >, <=, >+
Logical shift: >>, <<
Conditional: ?:
Concatenation: {}
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Lexical Conventions

• The lexical conventions are close to the programming
language C++.

• Comments are designated by // to the end of a line or by /*
to */ across several lines.

• Keywords, e. g., module, are reserved and in all lower case
letters.

• The language is case sensitive, meaning upper and lower
case letters are different.

• Spaces are important in that they delimit tokens in the
language.

Number specification

• Numbers are specified in the traditional form of a series of
digits with or without a sign but also in the following form:

• <size><base format><number>
– where <size> contains decimal digits that specify the size of the constant

in the number of bits. The <size> is optional. The <base format> is the
single character ' followed by one of the following characters b, d, o and
h, which stand for binary, decimal, octal and hex, respectively. The
<number> part contains digits which are legal for the <base format>.
Some examples:

– 4'b0011     // 4-bit binary number 0011
– 5'd3    // 5-bit decimal number
– 32’hdeadbeef // 32 bit hexadecimal number
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Bitwise/Logical Operators

• Bitwise operators operate on the bits of the operand or
operands.

– For example, the result of A & B is the AND of each corresponding bit
of A with B. Operating on an unknown (x) bit results in the expected
value. For example, the AND of an x with a FALSE is an FALSE. The
OR of an x with a TRUE is a TRUE.

• Operator Name
• ~  Bitwise negation
• & Bitwise AND
• |  Bitwise OR
• ^  Bitwise XOR
• ~&  Bitwise NAND
• ~|  Bitwise NOR
• ~^ or ^~ Equivalence (Bitwise NOT XOR)

Miscellaneous Operators

• { , } Concatenation of nets
• Joins bits together with 2 or more comma-separated expressions, e, g.

{A[0], B[1:7]} concatenates the zeroth bit                         of A to bits
1 to 7 of B.

• << Shift left (Multiplication by power of 2)
• Vacated bit positions are filled with zeros, e. g., A = A << 2; shifts A

two bits to left with zero fill.

• >> Shift right (Division by power of 2)
• Vacated bit positions are filled with zeros.

• ?: Conditional (Creates a MUX)
• Assigns one of two values depending on the conditional expression.

E.g., A = C > D ? B+3 : B-2; means if C greater than D, the value of
A is B+3 otherwise B-2.
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Unary Reduction Operators

• Unary reduction operators produce a single bit result from
applying the operator to all of the bits of the operand. For
example, &A will AND all the bits of A.

• Operator Name
• & AND reduction
• | OR reduction
• ^ XOR reduction
• ~& NAND reduction
• ~| NOR reduction
• ~^ XNOR reduction

• I have never used these, if you find a realistic application,
let me know…  J

Relational Operators

• Relational operators compare two operands and return a
logical value, i. e., TRUE(1) or FALSE(0)—what do these
synthesize into?

• If any bit is unknown, the relation is ambiguous and the result is
unknown – should never happen!

Operator Name
> Greater than
>= Greater than or equal
< Less than
<= Less than or equal
== Logical equality
!= Logical inequality
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Logical Operators

• Logical operators operate on logical operands and
return a logical value, i. e., TRUE(1) or FALSE(0).
– Used typically in if and while statements.

• Do not confuse logical operators with the bitwise Boolean
operators. For example , ! is a logical NOT and ~ is a bitwise
NOT. The first negates, e. g., !(5 == 6) is TRUE. The second
complements the bits, e. g., ~{1,0,1,1} is 0100.

– Operator Name
– ! Logical negation
– && Logical AND
– || Logical OR

Continuous Assignment
Continually drive wire variables
Used to model combinational logic or make connections

between wires
Module half_adder(x, y, s, c)

input x, y;
output s, c;

assign s = x ^ y;
assign c = x & y;

endmodule

Module adder_4(a, b, ci, s, co)
input [3:0] a, b;
input ci;
output [3:0]s;
output co;

assign {co, s} = a + b + ci;

endmodule

–Anytime right hand side
(RHS) changes, left hand
side (LHS) is updated

–LHS must be a “net”
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Initial and Always
• Multiple statements  per block

Procedural assignments
Timing control
control

• Initial blocks execute once
• at t = 0

• Always blocks execute continuously
• at t = 0 and repeatedly thereafter

initial
begin

   •
   •
   •

end

always
begin

   •
   •
   •

end

Procedural assignments
• Blocking assignment  =

Regular assignment inside procedural block
Assignment takes place immediately
LHS must be a register

• Nonblocking assignment  <=
Compute RHS
Assignment takes place  at end of  block
LHS must be a register

always
begin

A = B;
B = A;

end

always
begin

A <= B;
B <= A;

end

swap A and B

A = B, B= B
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• We will only use them to define combinational
logic
– as a result, blocking (=) and nonblocking assignment

(<=) are the same

• Example:
reg out;
always @(in1 or in2)
begin
   out = in1 & in2;
end

Using Procedural Assignments

LHS must be of type reg
Does NOTNOT mean this is a DFF

All input signals must be in
sensitivity list (fully qualified)

Begin and End define a block
in Verilog

If-Else Conditional

• Just a combinational logic mux
• Every if must have matching else or state element will be

inferred—why?
always @(control or in1 or in2)
begin
   if (control == 1’b1) begin

         out = in1;
  end
  else begin
    out = in2;

     end
end

• Watch nestings—make life easy, always use begin…end
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Case Statement Procedural
Assignment

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);
  output out;
  input i0, i1, i2, i3;
  input s1, s0;
  reg out;
  always @(s1 or s0 or i0 or i1 or i2 or i3)
    begin
      case ({s1, s0})
        2'b00: out = i0;
        2'b01: out = i1;
        2'b10: out = i2;
        2'b11: out = i3;
        default: out = 1'bx;
      endcase
    end
endmodule

X is don’t care
After initial synchronous reset

there should nevernever be any X’s in
your design

Make sure all 2^n cases are covered or
include a “default:” statement or else

state elements will be inferred

Note how all nets that are inputs to the
always block are specified in the
sensitivity list (fully qualified)

Loop Statements
• Repeat

• While

• For

i = 0;
repeat (10)
 begin

i = i + 1;
$display( “i = %d”, i);

 end
 

i = 0;
while (i < 10)
 begin

i = i + 1;
$display( “i = %d”, i);

 end
 

for (i = 0; i < 10; i = i + 1)
 begin

i = i + 1;
$display( “i = %d”, i);

 end
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Verilog Coding Rules
• Coding rules eliminate strange simulation

behavior

– When modeling sequential logic, use nonblocking
assignments

– When modeling combinational logic with always
block, use blocking assignments. Make sure all RHS
variables in block appear in @ expression

– If you mix sequential and combinational logic within
the same always block use nonblocking assignments

– Don’t mix blocking and nonblocking assignments in
the same always block

– Don’t make assignments to same variable from more
than one always block

– Don’t make assignments using 0# delays

So how do I get D-FlipFlops?
• Use 183lib.v to instantiate them

– dff, dffr, dffre

• These are the onlyonly state elements (except for
CoreGen RAMs) allowed in your design

dff,
dffr,
dffre

Modules with
fully qualified
always blockswire

wire

FF Combinational logic (NS, O)
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Dffre guts

// dffre: D flip-flop with active high enable and reset
// Parametrized width; default of 1
module dffre (d, en, r, clk, q);
  parameter WIDTH = 1;
  input en;
  input r;
  input clk;
  input [WIDTH-1:0] d;
  output [WIDTH-1:0] q;
  reg [WIDTH-1:0] q;
  always @ (posedge clk)
  if ( r )
    q <= {WIDTH{1'b0}};
  else if (en)
    q <= d;
  else q <= q;
endmodule

Only change LHS on “posedge clk”
Note that if statement is missing an else

Replicator Operator.
How cute!! J

No Behavioral Code

• No “initial” statements
– Often used to reset/initialize design

• No system tasks
– “$” commands (ie, “$display()”)

• For both, use Xilinx simulator and scripts
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Use Case Statement for FSM

• Instantiate state elements as dffX

• Put next state logic in always @() block
– Input is curstate (.q of dffX) and other inputs

– Output is nextstate which goes to .d of dffX

– Use combined case and if statements
• “If” good for synchronous resets and enables

• Synthesis tools auto-magically minimizes all
combinational logic.
– Three cheers for synthesis!! J

8-bit Counter
module counter_8 (clk, reset, en, cntr_q);
   input clk;
   input reset;
   input en;
   output [7:0] cntr_q;

   reg [7:0] cntr_d;
   wire [7:0] cntr_q;

   // Counter next state logic
   always @(cntr_q)
   begin
        cntr_d = cntr_q + 8'b1;
   end

   // Counter state elements
   dffre #(8) cntr_reg (.clk(clk), .r(reset), .en(en),

.d(cntr_d), .q(cntr_q));

Endmodule
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CoreGen

• Tools ‡ Design Entry ‡ Core Generator
– Useful info appears in “language assistant”—Read it!

• Only use this for memories for now
– Do you need anything else??

• I really cannot think of anything now

• Caveat: Block Memory does not simulate
correctly with initial values.
– Must create gate netlist by completing synthesis and

implementation.
– Simulate by loading time_sim.edn into Simulator

Monday Jan 13

• Lab project #1

• The Game of Life


