
1

Lecture #2: Verilog HDL

Paul Hartke
Phartke@stanford.edu

Stanford EE183
April 8, 2002

EE183 Design Process

• Understand problem and generate block diagram
of solution

• Code block diagram in verilog HDL
• Synthesize verilog
• Create verification script to test design
• Run static timing tool to make sure timing is met
• Design is mapped, placed, routed, and *.bit file is

created download to FPGA

2

module synchronizer (in, out, clk);
parameter SIZE = 1;

input [SIZE-1:0] in
input clk;
output [SIZE-1:0] out;

wire [SIZE-1:0] x;

dff #(SIZE) dff_1(.d(in[SIZE-1:0]), .clk(clk), .q(x[SIZE-1:0]));
dff #(SIZE) dff_2(.d(x[SIZE-1:0]), .clk(clk), .q(out[SIZE-1:0]));

endmodule

Module is basic verilog construct
Buses are created as

vectors. For n bit bus use
convention: [n-1:0]

All Input and Output ports
must be declared as such.

Can also be “ inout” for tri-
state but rarely used

Instantiation: “ dff” is name of module
“#(SIZE)” overwrites parameters

“.port_in_called_module(signal_in_this_model)”

All internal variables must be
explicitly declared.

“wire” is one type of net used to
connect things

Lexical Conventions

• The lexical conventions are close to the
programming language C++.

• Comments are designated by // to the end of a line
or by /* to */ across several lines.

• Keywords, e. g., module, are reserved and in all
lower case letters.

• The language is case sensitive, meaning upper and
lower case letters are different.

• Spaces are important in that they delimit tokens in
the language.

3

Number specification

• Numbers are specified in the traditional form of a
series of digits with or without a sign but also in
the following form:

• <size><base format><number>
– where <size> contains decimal digits that specify the size of the

constant in the number of bits. The <size> is optional. The <base
format> is the single character ' followed by one of the following
characters b, d, o and h, which stand for binary, decimal, octal
and hex, respectively. The <number> part contains digits which
are legal for the <base format>. Some examples:

– 4'b0011 // 4-bit binary number 0011
– 5'd3 // 5-bit decimal number
– 32’hdeadbeef // 32 bit hexadecimal number

Bitwise/Logical Operators

• Bitwise operators operate on the bits of the
operand or operands.

– For example, the result of A & B is the AND of each
corresponding bit of A with B. Operating on an unknown (x) bit
results in the expected value. For example, the AND of an x with
a FALSE is an FALSE. The OR of an x with a TRUE is a TRUE.

• Operator Name
• ~ Bitwise negation
• & Bitwise AND
• | Bitwise OR
• ^ Bitwise XOR
• ~& Bitwise NAND
• ~| Bitwise NOR
• ~^ or ^~ Equivalence (Bitwise NOT XOR)

4

Miscellaneous Operators

• { , } Concatenation of nets
• Joins bits together with 2 or more comma -separated

expressions, e, g. {A[0], B[1:7]} concatenates the zeroth bit
of A to bits 1 to 7 of B.

• << Shift left (Multiplication by power of 2)
• Vacated bit positions are filled with zeros, e. g., A = A << 2;

shifts A two bits to left with zero fill.

• >> Shift right (Division by power of 2)
• Vacated bit positions are filled with zeros.

• ?: Conditional (Creates a MUX)
• Assigns one of two values depending on the conditional

expression. E.g., A = C > D ? B+3 : B-2; means if C greater
than D, the value of A is B+3 otherwise B-2.

Unary Reduction Operators

• Unary reduction operators produce a single bit
result from applying the operator to all of the bits
of the operand. For example, &A will AND all the
bits of A.

• Operator Name
• & AND reduction
• | OR reduction
• ^ XOR reduction
• ~& NAND reduction
• ~| NOR reduction
• ~^ XNOR reduction

• I have never used these, if you find a realistic
application, let me know… ☺

5

Continuous Assignment

• assign out = in1 & in2;
– Amazingly enough creates an “and” gate!
– Anytime right hand side (RHS) changes, left

hand side (LHS) is updated
– LHS must be a “wire”

• We will only use them to define combinational
logic
– as a result, blocking (=) and nonblocking assignment

(<=) are the same
• Example:

reg out;
always @(in1 or in2)
begin

out = in1 & in2;
end

Procedural Assignments

LHS must be of type reg
Does NOTNOT mean this is a DFF

All input signals must be in
sensitivity list

Begin and End define a block
in Verilog

6

If-Else Conditional
Procedural Assignment

• Just a combinational logic mux
• Every if must have matching else or state element

will be inferred—why?
always @(control or in)
begin

if (control == 1’b1)
out = in;

end
• Watch nestings—make life easy, always use

begin…end

Logical Operators

• Logical operators operate on logical operands and
return a logical value, i. e., TRUE(1) or
FALSE(0).
– Used typically in if and while statements.

• Do not confuse logical operators with the bitwise Boolean
operators. For example , ! is a logical NOT and ~ is a bitwise
NOT. The first negates, e. g., !(5 == 6) is TRUE. The second
complements the bits, e. g., ~{1,0,1,1} is 0100.

– Operator Name
– ! Logical negation
– && Logical AND
– || Logical OR

7

Relational Operators

• Relational operators compare two operands and
return a logical value, i. e., TRUE(1) or
FALSE(0)—what do these synthesize into?

• If any bit is unknown, the relation is ambiguous and the result
is unknown – should never happen!

Operator Name
> Greater than
>= Greater than or equal
< Less than
<= Less than or equal
== Logical equality
!= Logical inequality

Case Statement Procedural
Assignment

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);
output out;
input i0, i1, i2, i3;
input s1, s0;
regout;
always @(s1 or s0 or i0 or i1 or i2 or i3)

begin
case ({s1, s0})
2'b00: out = i0;
2'b01: out = i1;
2'b10: out = i2;
2'b11: out = i3;
default: out = 1'bx;

endcase
end

endmodule

X is don’t care
After initial synchronous reset

there should nevernever be any X’s in
your design

Make sure all 2^n cases are covered or
include a “default:” statement or else

state elements will be inferred

Note how all nets that are inputs to the
always block are specified in the

sensitivity list

8

So how do I get D-FlipFlops?

• Use 183lib.v to instantiate them
– dff, dffr, dffre

• These are the onlyonly state elements (except
for CoreGen RAMs) allowed in your design

Dffre guts
// dffre: D flip-flop with active high enable and reset
// Parametrized width; default of 1
module dffre (d, en, r, clk, q);
parameter WIDTH = 1;
input en;
input r;
input clk;
input [WIDTH -1:0] d;
output [WIDTH -1:0] q;
reg [WIDTH-1:0] q;
always @ (posedge clk)
if (r)
q <= {WIDTH{1'b0}};

else if (en)
q <= d;

else q <= q;
endmodule

Only change LHS on “ posedge clk”
Note that if statement is missing an else

Replicator Operator.
How cute!! ☺

9

No Behavioral Code

• No “initial” statements
– Often used to reset/initialize design

• No system tasks
– “$” commands (ie, “$display()”)

• For both, use Xilinx simulator and scripts

Use Case Statement for FSM

• Instantiate state elements as dffX
• Put next state logic in always @() block

– Input is curstate (.q of dffX) and other inputs
– Output is nextstate which goes to .d of dffX
– Use combined case and if statements

• “If” good for synchronous resets and enables

• Synthesis tools auto-magically minimizes all
combinational logic.
– Three cheers for synthesis!! ☺

10

8-bit Counter
module counter_8 (clk, reset, en, cntr_q);

input clk;
input reset;
input en;
output [7:0] cntr_q;

reg [7:0] cntr_d;
wire [7:0] cntr_q;

// Counter next state logic
always @(cntr_q)
begin

cntr_d = cntr_q + 8'b1;
end

// Counter state elements
dffre #(8) cntr_reg (.clk(clk), .r(reset), .en(en), .d(cntr_d), .q(cntr_q));

Endmodule

CoreGen

• Tools à Design Entry à Core Generator
– Useful info appears in “language assistant”—Read it!

• Only use this for memories for now
– Do you need anything else??

• I really cannot think of anything now

• Caveat: Block Memory does not simulate
correctly with initial values.
– Must create gate netlist by completing synthesis and

implementation.
– Simulate by loading time_sim.edn into Simulator

