
www.latticesemi.com 1 rd1141_01.0

October 2012 Reference Design RD1141

© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Introduction
The Serial Peripheral Interface (SPI) bus provides an industry standard interface between processors and other
devices. This reference design documents a SPI Master Controller designed to provide an interface between a
generic processor with parallel bus interface and external SPI devices. The SPI Master Controller can communi-
cate with multiple off-chip SPI ports.

The data size of the SPI bus can be configured to either 16 or 32 bits. The design can also to be configured to use
an internal FIFO or not. The SPI Master Controller design supports all modes of CPOL and CPHA (00, 01, 10 and
11).

This design uses three pins (clock, data in and data out) plus one select for each slave device. A SPI is a good
choice for communicating with low-speed devices that are accessed intermittently and transfer data streams rather
than reading and writing to specific addresses. A SPI is an especially good choice if we can take advantage of its
full-duplex capability for sending and receiving data at the same time.

This reference design is implemented in VHDL. The Lattice iCECube2™ Place and Route tool integrated with the
Synplify Pro synthesis tool is used for the implementation of the design. The design uses an iCE40™ ultra low den-
sity FPGA and can be targeted to other iCE40 family members.

Figure 1. Block Diagram

o_sclk

o_slave_csn[3:0]

i_miso

o_mosi

Processor
Interface

SPI
Master

SPI SlaveHost

i_rd

o_tx_error

o_rx_ready

o_rx_error

o_intr

i_data [15:0]

o_data [15:0]

i_slave_addr [1:0]

i_clk_period [7:0]

i_cpol

i_cpha

i_lsb_first

i_spi_start

o_tx_ready

i_sys_rst

i_sys_clk

i_csn

i_wr

i_hold_cycle [7:0]

i_tx2xtx_cycle [7:0]

i_setup_cycle [7:0]

SPI Master Controller

2

SPI Master Controller

Features
• Four SPI slave select lines based on address

• Provision for easy integration of any processor interface

• Compile time configurable features
– CPOL and CPHA modes – 00, 01, 10, 11
– Configurable SCLK period
– Configurable setup, hold and time interval between two SPI transactions

• Parameterized data width

• User-configurable read and write data FIFOs

• P-XACT version 1.2 compliant

Functional Description
Figure 2. Functional Block Diagram

The SPI Master Controller provides an interface between the generic parallel processor with a generic processor
interface bus and a SPI device.

i_rd

o_tx_error

o_rx_ready

o_rx_error

i_data [15:0]

o_data [15:0]

i_slave_addr [1:0]

i_clk_period [7:0]

i_cpol

i_spi_start

i_cpha

i_lsb_first

o_tx_ready

i_csn

i_wr

i_hold_cycle [7:0]

i_tx2xtx_cycle

i_setup_cycle [7:0]

SCLK_GEN

SS_GEN

o_sclk

SPI_DATA_PATH
o_mosi

o_intr

i_miso

i_cpol

SPI Master

3

SPI Master Controller

On the internal side, the SPI has a parallel bus that connects the SPI master with a processor and other on-chip
components. There are input pins for write enable and read enable, as well as pins for selection of CPOL and
CPHA, least-significant bit or most-significant bit first, transmitter and receiver ready signals, data and address bus,
bus-to-input setup and hold cycles.

On the external side, the SPI master has a standard SPI bus interface:

• SLCK (Serial Clock) – Generated by the master to synchronize the data transfers

• MISO (Master In, Slave Out) – Transfers data going to the master from the slave

• MOSI (Master Out, Slave in) – Transfers data going from the master to the slave

• SS_N (Slave Select) – Asserted by the master to begin data transfer. There are four slave select outputs for
selecting four different SPI slaves.

SPI master data samples from the MISO line depend upon the current bit count and CPOL/CPHA mode. A shift
register on the receive data path converts serial-to-parallel conversion. Similar parallel-to-serial conversion takes
place in the transmit data path.

Signal Descriptions
Table 1. Signal Descriptions

Signal Width Type Description

i_sys_rst 1 Input Asynchronous active low reset

i_sys_clk 1 Input System clock

i_csn 1 Input Active low chip select

i_data 16 Input Input data from the processor interface

i_wr 1 Input Active low write enable

i_rd 1 Input Active high read enable

o_data 16 Output Output data to the processor interface

o_tx_ready 1 Output Transmitter ready – Indicates additional data can be written

o_rx_ready 1 Output Receiver ready – Indicates additional data can be read

o_tx_error 1 Output Indicates error in transmission of data

o_rx_error 1 Output Indicates error in received data

i_cpol 1 Input Polarity of the clock

i_cpha 1 Input Phase of the clock

i_lsb_first 1 Input LSB sent first when ‘1’. MSB goes first when ‘0’.

i_slave_addr 2 Input Slave address to select a slave device

i_spi_start 1 Input Start SPI master transactions

i_setup_cycles 1 Input SPIM setup time in terms of i_sys_clk

i_hold_cycles 1 Input SPIM hold time in terms of i_sys_clk

i_tx2tx_cycles 1 Input SPIM interval between data transactions in terms of i_sys_clk

i_clk_period 1 Input SCLK clock period in terms of i_sys_clk

o_mosi 1 Output Serial data output from master

i_miso 1 Input Serial data input to the master

o_slave_csn 4 Output Slave select from master

o_sclk 1 Output Serial clock is generated by the master

o_intr 1 Output Interrupt output from SPI master

4

SPI Master Controller

Design Module Description
To begin communication, the master first configures the clock using a frequency less than or equal to the maximum
frequency the slave device supports. Such frequencies are commonly in the range of 1-70 MHz.

The master then pulls the slave select of the desired slave low based on the slave address and starts issuing the
clock pulses.

SCLK Generation Module
The SCLK generation module generates the SPI Master clock, SCLK, based on input control signals (clock period,
setup, hold time and SPI transaction to transaction interval) all expressed in terms of system clock cycle counts.
This module is comprised of a simple FSM which enables clock generation, holding SCLK at low or high based on
CPOL = 0 or CPOL = 1. It is also responsible for generating the chip select for the SPI slave, adhering to setup and
hold times as well as the wait time between two transactions.

SPI Data Path
SPI data path samples the MISO line and drives the MOSI line based on the CPOL/CPHA modes as follows:

• At CPOL=0, the base value of the clock is zero
– For CPHA=0, data is read on the clock’s rising edge and the data is changed on the falling edge
– For CPHA=1, data is read on the clock’s falling edge and the data is changed on the rising edge

• At CPOL=1, the base value of the clock is one (inversion of CPOL=0)
– For CPHA=0, data is read on the clock’s falling edge and the data is changed on the rising edge
– For CPHA=1, data is read on the clock’s rising edge and the data is changed on the falling edge

The SPI Master module supports four modes: {CPOL, CPHA} = {00, 01, 10, 11}. This module is responsible for
sampling the MISO line and shifting the data based on the current bit count of the SPI transaction as well as the
CPOL and CPHA modes. This module is also responsible for pushing bits of data on the MOSI line from a shift reg-
ister based on bit counts and CPOL/CPHA modes.

During each SPI clock cycle, a full duplex data transmission occurs:

• The master sends a bit on the MOSI line; the slave reads it from that same line

• The slave sends a bit on the MISO line; the master reads it from that same line

While all four of these operations happen each cycle, they may not be used or required.

Write FIFO
This 16x16 FIFO is compile time configurable and stores data written by the processor. Before the SPI transactions
take place, the data to be written to the slave device is written to the FIFO by the processor. The SPI Master Con-
troller then reads data from this FIFO and sends it to the slave.

Read FIFO
This 16x16 FIFO is compile time configurable and stores data written by the slave device. The processor can read
data from this FIFO after a SPI transaction.

Initialization Conditions
No user-specific initialization conditions, except that the i_sys_rst must be held low initially to bring up the design in
the correct operating state.

Configurable Parameters

• FIFO_REQ – This Boolean parameter configures the FIFO usage.
– If TRUE, two 16x16 FIFOs are inferred
– If FALSE, no FIFOs are inferred

5

SPI Master Controller

• DATA_SIZE – This parameter configures the data width of the SPI transaction. It can take two values:
– 16 (default value)
– 8 (in this case the higher eight bits of the data in the FIFO are filled with zeros)

Operation Sequence
If the parameter FIFO_REQ is set to ‘0’ then:

• A total of 16 transactions take place

• Four sets of data are used in the four transactions; each checks boundary conditions

• Four transactions each with CPOL/CPHA modes: 00, 01, 10 and 11

• Varying clock period, setup, hold delay and transaction intervals

Test procedure:

1. Write data to the SPI Master and set up CPOL and CPHA.

2. Set up the following parameters: clk_period, setup, hold, tx2tx cycles, LSB/MSB first modes and
slave_addr.

3. Initiate SPI transactions by writing ‘1’ to SPI start of the SPI Master.

4. Wait for the transaction to complete and then read the data.

5. Repeat steps 2, 3, and 4 for four different clk_period, setup, hold, tx2tx cycles and slave_addr configura-
tions.

6. Repeat steps 1-5 for four different sets of CPOL, CPHA and LSB/MSB first modes as well as the input
data pattern to the SPI Master.

7. After these sequences, the simulation ends.

If the parameter FIFO_REQ is set to ‘1’ then 16 words are written to the FIFO before transactions are started.

Test procedure:

1. Set up CPOL and CPHA.

2. Set up the following parameters: clk_period, setup, hold, tx2tx cycles, LSB/MSB first modes and
slave_addr.

3. Initiate SPI transactions by writing a ‘1’ to the SPI start of SPI Master.

4. Wait for the transaction to complete and then read the data.

5. Repeat steps 2, 3, and 4 for four different clk_period, setup, hold, tx2tx cycles and slave_addr configura-
tions.

6. Repeat steps 1-5 for four different sets of CPOL, CPHA and LSB/MSB first modes as well as the input
data pattern to the SPI Master

7. After these sequences, the simulation ends.

6

SPI Master Controller

Timing Diagram
Figure 3. Timing Diagram

Simulation Waveforms
Figure 4. Simulation Waveforms

Implementation
This design is implemented in VHDL. When using this design in a different device, density, speed or grade, perfor-
mance and utilization may vary.

Table 2. Performance and Resource Utilization

Family Language Utilization (LUTs) fMAX (MHz) I/Os
Architectural
Resources

iCE401 VHDL 360 125 86 N/A

1. Performance utilisation characteristics are generated using iCE-40LP1K-CM121 with iCEcube2 design software.

o_sclk

i_cpol = 0

i_cpol = 1

o_slave_csn

sclk_cycle_count

i_miso

o_mosi

sclk_cycle_count

i_miso

o_mosi z z1 2 3 4 5 6 7 8

z z1 2 3 4 5 6 7 8

z z1 2 3 4 5 6 7 8

z z1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

i_cpha = 0

i_cpha = 1

7

SPI Master Controller

References
• iCE40 Family Handbook

Technical Support Assistance
Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)
e-mail: techsupport@latticesemi.com
Internet: www.latticesemi.com

Revision History

October 2012 01.0

Date Version Change Summary

Initial release.

www.latticesemi.com/dynamic/view_document.cfm?document_id=45521
http://www.latticesemi.com/

	SPI Master Controller
	Introduction
	Features
	Functional Description
	Signal Descriptions
	Design Module Description
	SCLK Generation Module
	SPI Data Path
	Write FIFO
	Read FIFO
	Configurable Parameters

	Operation Sequence
	Timing Diagram
	Simulation Waveforms
	Implementation
	References
	Technical Support Assistance
	Revision History

