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Introduction

F 
ield programmable gate arrays (FPGAs) are integrated cir-
cuits that enable designers to program customized digital 

logic in the field. FPGAs have been around since the 1980s and 
were originally conceived to give all design teams the ability 
to create custom logic. In the early days, using an FPGA in 
your design meant you had to do a lot of programming just to 
get your FPGA to perform simple functions, so most design-
ers avoided them. If you haven’t looked into FPGAs since your 
university studies way back when, you’ll want to take another 
look at them.

The FPGA has evolved from a useful but humble interface 
device into a system-level integrated circuit (IC) with its own 
microprocessors, memory blocks, and interfaces. It’s the next 
big thing.

Now would be a great time to get an inexpensive development 
kit, download free tools, and begin to explore this world for 
yourself. And this book will help you understand the practical 
uses of FPGAs.

About This Book
This book is for you if you’re a system designer, an experi-
enced engineer, or someone who hasn’t seen FPGAs since 
your days in engineering school.

This book was written with cooperation from Altera 
Corporation.

Icons Used in This Book
Throughout this book, I occasionally use special icons to call 
attention to important information. You won’t see the typical 
smiley faces or emoticons, but you’ll definitely want to stop 
and pay attention! Here’s what you can expect.
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 This icon points out information that you’ll want to put into your 
cache, your memory, or whatever that thing is you use to keep 
information, like birthdays and phone numbers, for later use!

 Who knows? You might come away with some neat information 
you can use to impress your friends at parties!

 No, I’m not asking you to take care of your servers and bartend-
ers! You should stop and take notice because these are bits and 
pieces of knowledge that could save you aggravation later on.

Beyond the Book
Although this book is stuffed with information, I can only cover 
so much in 48 pages! So, if you find yourself wanting more 
information about FPGAs, just go to www.altera.com. There 
you can find more information about Altera and its FPGAs. You 
can also view videos and webinars, download demos, read data 
sheets and white papers, and much more!
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Chapter 1

FPGAs for Everyone
In This Chapter
▶ Introducing FPGAs

▶ Discovering how FPGAs do what they do

▶ Examining the differences between FPGAs and ASICs

W 
elcome! If you’re reading this chapter, it’s a good bet 
that you’re an engineer who may have learned about 

field programmable gate arrays (FPGAs) in the past, but you 
now want to know more. Maybe you’re wondering how you 
can use them with your designs. In this chapter, I introduce 
you to FPGAs and explain what problems they solve. I also go 
over how they do what they do and discuss design tradeoffs 
and the truth about FPGA operation.

Compared to other ways of building hardware, FPGAs have 
two huge things going for them. First, they enable you to build 
exactly the hardware you need, instead of having to use the 
same application-specific standard product (ASSP) all your 
competitors are using, or having to undertake the time, cost, 
and risk of an application-specific integrated circuit (ASIC) 
design.

But just as important, that ability to customize the FPGA 
means that often, in an FPGA, you can do operations in a sim-
pler, faster, more energy-efficient way than they could be done 
in the microprocessor cores of an ASSP.
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So Why Would You Need 
an FPGA, Anyway?

I’m glad you asked! An FPGA is a semiconductor device on 
which the function can be defined after manufacturing. An 
FPGA enables you to program product features and functions, 
adapt to new standards, and reconfigure hardware for specific 
applications even after the product has been installed in the 
field — hence the term field programmable. And gate arrays 
are two-dimensional arrays of logic gates. If you get enough of 
these things put together, you can make those simple calcula-
tions add up to do something meaningful.

In less technical terms, an FPGA allows you flexibility in your 
designs and is a way to change how parts of a system work 
without introducing a large amount of cost and risk of delays 
into the design schedule.

A simple example is a rear-view camera designed for a car. If 
your camera system takes 250 milliseconds from the time the 
image sensor sees the image until the image frame actually 
appears on the display, and a change in government regula-
tions requires that this delay or latency be no more than 
100 milliseconds, you could find ways to adjust the image 
signal processing pipeline in an FPGA to comply with the new 
latency requirements. This would be almost impossible to 
do with a microprocessor-based system. In this example, a 
company can gain a big advantage using an FPGA because it 
doesn’t have to redesign parts or buy all new processors.

In the early days, FPGA circuits were very large and you 
couldn’t fit many onto a single chip. All a designer could do 
was build an interface with an FPGA and customers could 
reprogram that interface to do something different (for 
example, changing an interface that operates on a keyboard 
input to one that handles input from a touchscreen device). 
Soon, however, designers realized they could build entire sub-
systems out of FPGAs, which meant designers were no longer 
restricted to only using ASICs to implement these subsystems. 
Because circuit components keep getting smaller and smaller, 
designers can put many more devices on the same board 
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 Chapter 1: FPGAs for Everyone 5
space — allowing for more sophisticated functionality and 
faster arithmetic, which in turn leads to faster computation 
and less power consumption.

 Modern FPGAs consist of mixes of configurable static random 
access memory (SRAM or Flash), high-speed input/output pins 
(I/Os), logic blocks, and routing. More specifically, an FPGA 
contains programmable logic elements called, naturally, 
logic elements (LEs), as well as a hierarchy of reconfigurable 
interconnects that allow the LEs to be physically connected to 
one another. You can configure LEs to do complex functions 
or simply perform basic logic gates, such as AND and OR. 
Most FPGAs also contain memory blocks (for more on these 
topics, see the section “The building blocks of an FPGA”).

ASICs and ASSPs
An application-specific integrated 
circuit (ASIC) is an integrated circuit 
composed of electrical  components, 
such as transistors, capacitors, 
and resistors, usually fabricated 
on a wafer composed of silicon or 
other semiconductor material that 
is customized for a particular use. 
Two examples of ASICs are a voice 
recorder or a high-efficiency Bitcoin 
miner. Over the years, the size of 
components used in ICs has shrunk, 
meaning that more complex circuits 
can be created using the same 
space. Because of this shrinking of 
components, some ASICs have now 
become large enough to contain 
multiple microprocessors and other 
complex subsystems.

Application-specific standard prod-
ucts (ASSPs), on the other hand, are 
ICs that are dedicated to a specific 
application market and sold to more 
than one user (and hence, stan-
dard) in contrast to ASICs, which 

are designed and sold to a single 
customer. Some examples of ASSPs 
are microcontrollers and the system 
chips at the hearts of many smart-
phones and tablets.

ASICs and ASSPs are specifically 
designed for dedicated functionality. 
Because of the tight control of their 
configuration, ASICs and ASSPs are 
very compact, inexpensive, fast, 
and low-power, which are all highly 
desirable traits in electronics design. 
Because their function is hard-wired 
at the time of manufacture, it isn’t 
easy to change the functionality of 
a small part of the circuit. In fact, 
because these circuits are perma-
nently fabricated on silicon wafers, 
you simply can’t take apart the cir-
cuitry and replace it with something 
else. If you need to change some-
thing in the design, you have to 
scrap the whole chip and start from 
scratch.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.



FPGAs For Dummies, Altera Special Edition 6
Today, hard intellectual property (IP) can be built into the 
FPGA fabric to provide rich functionality while reducing 
power and lowering cost. Some examples of the hard IP 
included in today’s FPGAs are memory blocks, calculating cir-
cuits, transceivers, protocol controllers, and even central pro-
cessing units (CPUs). It is important to remember, however, 
that this hard IP isn’t customizable like the rest of the FPGA! 
Integrating hard IP — for example, a digital signal processor 
(DSP) — frees designers from reinventing the wheel each time 
they need to add these common pieces to their systems. FPGA 
manufacturers can get away with weaving hard IP compo-
nents into FPGAs because these functionalities have become 
commodities, and, therefore, quite uniform throughout most 
electronic systems.

Examining an FPGA
The following sections discuss FPGA components in detail 
and explain what an FPGA is in simpler language, in case it has 
been a long time since you first learned about FPGAs and have 
forgotten some of the details.

The building blocks of an FPGA
You can build anything digital from three simple pieces: a 
wire, a logic gate, and a register (see Figure 1-1). A register 
remembers a piece of information until it is told to remember 
something else. A logic gate performs simple logic operations 
on signals, and a wire connects these other pieces.

Courtesy of Altera Corporation.

Figure 1-1:  The building blocks of a digital system.

Logic gates
Logic gates perform the core functionality of digital circuits, 
which means they perform simple logic on inputs — electrical 
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 Chapter 1: FPGAs for Everyone 7
pulses that your computer uses to represent 0s and 1s (more 
on that later). On their own, these simple operations don’t do 
much, but when you put thousands or even millions of these 
together you can do something really powerful. Your comput-
er’s CPU is made up of billions of logic gates that allow your 
computer to do all the cool stuff that it does.

 In order to perform as functional circuits, logic gates use a type 
of arithmetic called Boolean algebra. Boolean algebra was first 
introduced in 1854 by George Boole. Unlike elementary algebra, 
where the values of variables are numbers and the main opera-
tions are addition and multiplication, the primary operations of 
Boolean algebra are the conjunction AND, the disjunction OR, 
and negation NOT. The values of variables in Boolean algebra 
are the truth values true and false.

The basics of Boolean algebra operations are as follows:

 ✓ And (conjunction) is denoted as x AND y, which yields a 
result of true if both x and y are true, and false otherwise.

 ✓ Or (disjunction) is denoted as x OR y, which yields true if 
either x or y is true, and false if neither x nor y is true.

 ✓ Not (negation) is denoted as NOT x, which yields true if x 
is false and false if x is true.

One of the most common uses of Boolean algebra happens to 
be in digital logic design. It turns out that Boolean algebra maps 
directly to digital circuits in which inputs are 0s and 1s or false 
and true. By connecting more and more of these logic gates that 
perform simple Boolean arithmetic on 0s and 1s, you get systems 
that can perform advanced functions. For instance, logic gates 
guide the Mars Rover, allow billions of devices to be connected 
to Global Positioning Systems (GPS), and even power your favor-
ite game on the iPhone where you launch birds at bad piggies!

Registers
Registers are simple devices that store pieces of data for use 
in the future. Think of registers as a short-term spot for plac-
ing data that you can access quickly; this is where you would 
place a phone number given to you moments before dialing. As 
soon as you try to remember something else, like the time you 
have to be at an appointment, that telephone number you tried 
to remember earlier is replaced with the starting time of the 
appointment. Registers keep whatever information is given to 
them until they’re told to forget it and keep new information.
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Wire
The third piece of all things digital is the wire used to connect 
all the registers and logic gates. These elements must be con-
nected for the entire system to do what you want, from simple 
tasks, such as adding 1 + 2, all the way to more complex tasks, 
such converting pulses from blue LEDs reading a Blu-ray disc 
into crisp, high-definition images on your television screen. You 
can build any digital system you want, with the right amount of 
logic gates and registers with wires to connect them all.

Explaining FPGAs creatively
But hold on a second! All this talk of logic gates, registers, and 
wires sounds really technical and is pretty abstract. Do you 
need to be an experienced electrical engineer to understand 
an FPGA? No! You can use two different metaphors to explain 
how FPGAs work. The first is the bead and string metaphor. 
The second is the LEGO metaphor.

So, what do beads and LEGO pieces have to do with the design 
of digital electronic systems? It turns out that beads and LEGO 
pieces illustrate two approaches to using logic elements to 
build electronic systems.

Beads and string
The method represented by beads and string gives the designer 
the finest control of the pattern by using small beads and thin 
string to connect them all. The result is a beautiful, very complex 
pattern. But this fine-grained control comes at a cost. It is very 
difficult, if not impossible, to change the pattern even slightly 
without undoing all your work and starting over. When you map 
the beads and threads to digital electronics design, you come up 
with a design that very much resembles ASICs or ASSPs.

Imagine a beadwork pattern created from many beads of dif-
ferent colors arranged in different patterns and connected 
by thread. Using these simple components, you can create 
almost any type of pattern from the most simple to the most 
complex depending on the number of beads, their colors, and 
how you choose to arrange them.

Now, imagine that the beads represent both registers and 
logic gates; and imagine the string as wire. Just like the beads 
and string, these elements produce a system — a system that 
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 Chapter 1: FPGAs for Everyone 9
can perform all sorts of computations from the very simple all 
the way to the very complex. You can think of different bead 
colors as representing the different types of logic gates such 
as AND, OR, or NOT, and you see how these simple arithmetic 
operations can become very complex calculations much like 
the arrangement of simple colors of beads can become very 
intricate patterns once put together with string.

By arranging beads in patterns, you can create beautiful 
designs, but what happens when you want to change the 
patterns into something else by rearranging the beads or 
changing the colors of the beads? This is where things get 
complicated! In order to change the patterns, you have to 
untangle all the string in order to change things around. You’ll 
soon find that the threads are so closely connected that you 
just can’t undo part of the design. Very quickly, you’ll see the 
whole design must come apart in order to change the pattern 
even slightly. Well, that’s not very flexible, is it?

LEGOs
The approach represented by LEGOs is a bit different. LEGOs 
are relatively big and chunky and can only fit together at certain 
points on the bricks. With LEGOs, it is very easy to change a 
small part of the design without tearing it apart and starting 
all over again. The LEGO design isn’t quite as elegant and intri-
cate as the pattern produced by beads and thread. You can, 
however, change parts of the design without ripping apart the 
whole thing and starting all over, which brings me to the second 
approach to digital electronic design: FPGAs.

Perhaps you’ve spent countless hours as a child or with your 
children building towers, firetrucks, and spaceships with LEGO 
pieces. Similarly, you can use LEGOs to create a nice representa-
tion of digital systems by building a table and pretending that 
some bricks are logic gates, some are registers, and others are 
the wires used to connect them all.

Now imagine that someone tells you she wants to change the 
pattern on the lower-right side of the table and, perhaps, to 
change the colors of the LEGOs. Because the LEGO bricks 
are all interconnecting pieces, you can easily remove just 
the pieces in the lower-right corner and replace them with a 
group of different LEGOs. The rest of the LEGOs on the table 
are left intact and you don’t have to redo the entire design 
just to change a small part.
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Comparing FPGAs and ASICs
FPGAs are generally more flexible and cost-effective than 
ASICs. In the following sections, I explain why.

Costs and flexibility
Using FPGAs, you can implement any logical function that an 
ASIC can do but with the distinct advantage of updating the 
functionality after chip manufacture, which is desirable for 
many applications. FPGAs are more cost-effective than ASICs 
because the customer can program FPGAs according to its 
requirements instead of contracting a vendor to design and 
construct an ASIC to meet its needs.

Design time risk reduction 
versus speed
If you set out to use the most advanced semiconductor process 
in the world, no matter the cost, you could always design an 
ASIC that would run faster than the fastest available FPGA. But 
almost no one uses the most advanced process: Doing so would 
be risky, very difficult, and witheringly expensive. In fact, only a 
handful of ASSP companies leap on a new process as soon as it’s 
available. Everyone else uses a process that is one, two, or three 
generations old. And the fact is, the fastest FPGA you can get can 
compete directly with those older ASIC processes. And the FPGA 
brings reduced design work and far less risk.

If, for example, you’re designing a system with specific power 
efficiency and performance requirements and are planning to 
use an older 65 nanometer (nm) ASIC, did you know you can 
achieve similar results with a current 20 nm FPGA?

And using the FPGA would shorten your design time, reduce 
your risk of design errors, and offer a lower total cost of 
ownership (TCO) than the ASIC. For most applications, the 
FPGA’s power consumption will be acceptable for your needs. 
Therefore, due to their lower TCO and greater flexibility, 
FPGAs are often the best technological choice.
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 Nanometers (nm) are a measure of the size of the transistors 

on a chip. The transistors have been shrinking for decades. 
See Chapter 2.

Choosing an FPGA for a system offers the designer greater 
configurability as well as less risk of impact to the develop-
ment schedule because, as demonstrated by the LEGO anal-
ogy, small parts of FPGAs can be modified without impact to 
the rest of the design.

FPGAs Are Surprisingly  
Easy to Use

Some designers have the false impression that building a 
system with a modern FPGA means you have to mess with 
millions of logic gates and massive amounts of connections 
just to do something useful. But if that were the case, FPGA 
use wouldn’t be growing: Instead, there would only be about a 
half dozen FPGA users left.

 The good news is that FPGA designers have done much of the 
heavy lifting of adding commonly needed components like 
clock generators, dynamic random access memory (DRAM) 
controllers, peripheral component interconnect Express (PCI) 
controllers, and even whole multicore microprocessors, so all 
that you have to concentrate on is customizing those functions 
that are specific to your application.

Hard IP
Earlier in the chapter, I mention that hard IP is intellectual 
property built into the FPGA, such as DRAM controllers, PCIe 
controllers, clock generators, and big blocks of memory. In 
fact, there is so much hard IP in today’s FPGAs that they really 
have become a system on a chip (SoC).

Not only are common functions that most system designers 
need built into the hard IP of the FPGA, but even many less-
commonly needed functions like high-speed serial transceiv-
ers for radar or communications, and digital signal processor 
(DSP) multiplier-accumulators for signal processing can be 
included. Today, even dual-core ARM (ARM is a brand of 
microprocessor designs) CPU subsystems may be built-in. In 
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fact, today’s high-end FPGAs may have programmable logic 
on only half the die area, the other half consisting of hard IP. 
Designers now commonly start with an FPGA that has the IP 
they need already built in and then use the programmable 
logic to customize the FPGA to their particular application.

Parallel operation and  
order reduction
Modern designers have become quite good at making tools 
that are smart enough to reduce more complicated operations 
into simpler ones (this is known as order reduction) and also 
have the ability to perform a complex operation in a series of 
instructions that operate simultaneously, which is known as 
parallel operation.

So this all sounds great, but what does it really mean? A micro-
processor can do just about anything simply by executing its 
instructions. If the program says to multiply, the microproces-
sor loads the instruction from memory, decodes it, loads each 
number, multiplies them, and stores the result. Each one of those 
steps takes time and energy. But what if all you wanted to do 
was multiply a number by 2? If you have a multiplication opera-
tion and you know one of the coefficients is a constant value, 
you can reduce this complex operation to a simpler one, saving 
you processing time and power. Microcontrollers, unlike FPGAs, 
don’t have the smarts to reduce multiplication to addition when 
possible, so they have to perform the multiplication operation, 
resulting in slower execution speed and more power use.

 FPGAs really shine when it comes to doing things like vector 
mathematics computations. Vector math isn’t just for physics 
class: Programmers use it whenever they have to perform the 
same operation on each one of a large set of numbers. The big 
advantage of FPGAs here is that although a microprocessor 
would have to treat each number separately — or at best, take 
a few numbers at a time — you can program the FPGA to do 
many operations and even many different operations simul-
taneously (in parallel). If you have a 128-element matrix, you 
can build 128 arithmetic “pipelines” so all of these operations 
can execute simultaneously, giving you huge gains in perfor-
mance and power usage.

Often an ASIC or ASSP isn’t the right answer!

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.



Chapter 2

What’s in an FPGA, 
Anyway?

In This Chapter
▶ Investigating the programmable fabric and I/O

▶ Taking a look at upward scaling

▶ Embedding hard IP and integrated CPUs

▶ Tackling the modern design flow

I 
f you’re reading this chapter, it’s a safe bet that you may know 
what an FPGA is. But if it’s been some time since you learned 

about FPGAs, you will be surprised by how they’ve evolved in 
recent years to be more than an array of programmable logic 
gates. They now include built-in hardware to perform many 
common functions right out of the box. This chapter takes you 
through what’s really in an FPGA, discusses the future of upward 
scaling, and walks you through how a design flow works.

The Basics – Programmable 
Fabric and I/O

As the name field-programmable gate array (FPGA) suggests, 
FPGAs are, at their core, simply integrated circuits that con-
tain a bunch of logic gates and I/O circuitry. The I/O circuitry 
takes in data from a source and spit out data at the other 
end into some other system or subsystem.

In Chapter 1, I discuss the building blocks of an electrical 
system: logic gates, wires, and registers. At the core of an 
electrical system is a flat rectangle of silicon with wires and 
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transistors that are etched into its surface. These bits of 
silicon are known as integrated circuits (ICs).

 Transistors are semiconductor devices usually made from sili-
con. More recently, they have also been made from new materi-
als such as Gallium Nitride (GaN) and Gallium Arsenide (GaAS). 
Transistors are used to switch and/or amplify electrical signals 
and have at least three connectors (or terminals) that form a 
connection to the circuit. Transistors switch electrical signals 
by applying an electrical potential energy (voltage) across two 
of the terminals, and then applying another potential at the 
third terminal, which causes the current to flow from one end 
of the transistor to the other across the first two terminals. 
When this potential is removed, no current flows through the 
circuit. Transistors can also amplify the input power by apply-
ing a voltage or current that causes the power at the output of 
the transistor to be greater than that supplied at the input.

Transistors are similar to the valves used in plumbing. When 
you apply force to the valve, water flows through a pipe 
(a wire in this analogy). When you remove the force on the 
valve, it closes and water stops flowing through the pipe. The 
same is true for transistors. When you apply electrical poten-
tial (force) to the transistor, electricity flows through it and 
out the other end onto the wires connecting the circuit. When 
you remove this electrical potential, electricity stops flowing.

History of transistors
Historians credit the development 
of the transistor in 1947 to John 
Bardeen, Walter Brattain, and 
William Shockley. What makes the 
transistor such a remarkable inven-
tion is that it ushered in the age 
of solid state electronics and the 
integrated circuit. Transistors are 
much, much, smaller and use much 
less power than the vacuum tubes 
they replaced. The reduction in size 
allowed for smaller devices, which 
ultimately means you can carry a 

phone around with you that plays 
the latest cat video from YouTube 
while getting driving directions to 
your favorite French-Vietnamese 
fusion restaurant! If you are feeling 
really nerdy, you can delight and 
amaze your friends at the next party 
by explaining to them that the word 
transistor was coined by John R. 
Pierce as a combination of the term 
transfer resistor. This tidbit may also 
come in handy for fabulous cash and 
prizes on Jeopardy!
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Boolean algebra is really numeric operations on input values of 
true or false or expressed numerically as 1 or 0. Logic gates are 
the devices that are used to perform the various Boolean algebra 
operations on input values of 0 or 1. Because transistors switch 
electrical signals by applying or removing an electrical potential, 
you can arrange a group of transistors in such a manner as to 
create a logic gate that can perform one of the Boolean algebra 
operations like AND, OR, or NOT (see Chapter 1 for a discussion 
of Boolean algebra operations).

The core of an FPGA is simply an array of these logic gates and 
wires etched into an integrated circuit in a way that allows you 
to reconfigure them. Or, if you prefer, take a look at the analogy 
I present in Chapter 1 that compares FPGAs to LEGO pieces 
arranged on a table.

So really, an FPGA, in its simplest form, is a big array of col-
orful rectangles placed on a rectangular table that can be 
arranged in the manner desired by its owner (or in the case of 
FPGAs, its programmer).

Moore’s Law
Moore’s Law originated from an 
article in the April 19, 1965, issue 
of Electronics Magazine called 
“Cramming More Components onto 
Integrated Circuits.” In this article, 
Moore accurately predicted that cir-
cuit complexity would double every 
two years while the wafer (the flat 
silicon disk on which the integrated 
circuit is built) would remain con-
stant. By the end of the 1970s, the 
most popular formulation of Moore’s 
Law became the limit for the number 
of transistors on the most complex 
chips. Amazingly, Moore’s prediction 
still holds true nearly 50 years after 
its initial publication!

Simply put, Moore’s Law states that 
because you can shrink the size of 
the features you inscribe on the inte-
grated circuit by 30 percent every 18 
to 24 months, you can double the tran-
sistor count. Moore’s Law does make 
things more complex and difficult. 
For example, adding all these wires 
and transistors to a smaller surface 
area of silicon makes it very difficult 
to maintain the placement integrity 
of the original circuit design, after 
processing, into the etched wafer of 
silicon. The projected images appear 
with oddities such as lines wider or 
narrower than designed, or distortions 
such as rounded corners on the wafer.
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In the past, designers found only simple uses for FPGAs, such 
as simple interfacing to computers and to create basic logic 
functions. Beyond their use as devices for field programming 
interfaces, designers didn’t do much else with them.

Scaling Upward
Designers have it covered when it comes to eliminating the 
problems that occur when etching circuits with what may 
add up to be millions of wires and transistors on a small 
wafer of silicon.

Another problem that occurs when scaling chip design to add 
millions, or even billions, of transistors is that it becomes 
very difficult to pinch off the transistors (cut off the electri-
cal potential) because the transistors are so small. As chip 
design continues to double the number of transistors on a 30 
percent smaller wafer, the design becomes more complex and 
the transistors leak more power, meaning that the chip even 
burns power when sitting around not doing any computa-
tions. The transistors also get weaker, so more work has to be 
done just to keep the chip from running slower.

Could the end of scaling be near? Designers already pack so 
much power into such a small area on a chip that it is possible 
for a chip to melt its own wires! Designers are getting close to 
the point where they’ll have to fundamentally change how they 
design transistors from a planar arrangement to a FinFET. A 
FinFET is a nonplanar double-gate field-effect transistor (FET) 
built on a silicon wafer designed to reduce the surface area a 
transistor occupies. The FinFET gets its name from the thin sili-
con “fin” that wraps the conducting channel of the transistor.

What does the future hold for chip designers? In the not-
so-distant past, a chip had about 20 transistors. In the next 
few years, chips will be built containing billions of transistors. 
Before these chips can be designed, designers will have to start 
making transistors that stand up on their edges, different kinds 
of wires, and many other changes. Chip design will be on the 
edge of unexplored territory — chips will be able to diagnose, 
compensate, and heal themselves. Indeed, these are exciting 
times for chip designers as they continue to extend Moore’s 
Law into the future!
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 The application of Moore’s Law has certainly been a winner 

for integrated circuits. Today’s integrated circuits may con-
tain millions or even billions of transistors and can perform 
very complex operations such as high-speed data networking, 
advanced 3D graphics computations, or streaming and play-
ing movies across the Internet in high definition! Moore’s Law 
doesn’t only apply to integrated circuits — its application has 
revolutionized FPGAs as well.

Hard IP and Integrated CPUs
Today, implementing a design in an FPGA can provide the same 
energy efficiency and speed as the same design implemented 
in an ASIC on the same size of hardware. This is true in part 
because FPGA vendors have embedded large blocks of 
predefined hardware into the FPGA to implement frequently 
needed functions, from standard interfaces to whole 
microcomputers.

The fact that FPGAs are field programmable gives them an 
edge over ASICs because the same hardware can be repro-
grammed in response to changes in design. If the design 
uses an ASIC, changing the design requires the hardware to 
be scrapped and new hardware has to be built to reflect the 
design changes. More designers are choosing FPGAs over 
ASICs for their designs. If you’re thinking about using FPGAs in 
your designs, read on to find out more about the design flow 
for designing with FPGAs while taking full advantage of their 
embedded hardware.

Modern Design Flow of FPGAs
FPGA designs often start with what are called reference designs, 
which represent a technical blueprint of a system that is 
intended for others to copy. Reference designs contain the 
essential elements of the system. Reference designs are 
typically done by applications engineers as part of a sales 
support effort, but the nature of the customer has changed. 
Increasingly, reference designs aren’t sales tools — they’re the 
product itself!
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Creating a functional  
block diagram
So what does a system design flow look like? Figure 2-1 shows 
a simple block diagram of a high-level system design flow.

Courtesy of Altera Corporation.

Figure 2-1:  System design flow. 

The system design flow appears in the form that you’d expect. 
First you define the requirements, and then create the archi-
tecture of the system you define. Here, you determine the 
components you need to implement your design. Next, you 
implement the system using the architecture you planned out. 
Finally, you verify that the system meets all the requirements.

Figure 2-1 shows a simplistic view of the system design flow. 
The Create Architecture and Implement System steps are 
where the action is. Here is where you’ll determine what the 
architecture of the system looks like and build the hardware 
and software applications required to implement the system 
design. You can further break out the steps between Define 
Requirements and Verify into a separate flow that can be called 
the software application flow. Figure 2-2 adds the steps of the 
software application flow to the system design flow in Figure 2-1.

Courtesy of Altera Corporation.

Figure 2-2:  System design flow with the software application flow.

The lighter colored blocks between Define Requirements and 
Integrate & Verify System make up the application flow of the 
design. In this step, you write and verify the applications 
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software and then integrate those applications with the hard-
ware. After the applications are integrated with the hardware, 
you integrate and verify that the system meets the design 
requirements.

The application flow is all about developing the applications 
needed to implement the system. Designers often must 
consider how their systems will run on different platforms 
depending on what type of application the system will be 
deployed into (for example, automotive, communications, and 
so on). Often, different application domains have established 
software and hardware standards to ensure that applications 
developed for these systems perform common functionality 
and can work with each other.

 Think about an Android-based phone, for example. The Android 
operating system contains common features that can be used 
by all applications developed for it and uses a platform standard 
for such things as accessing the camera and sharing data among 
applications. Designers often include what is typically called mid-
dleware into their applications. Middleware is a layer of software 
that doesn’t implement the core functionality of the product, but 
instead, provides a layer that implements an industry standard 
or protocol. Designers create middleware to isolate their appli-
cation logic from logic that is specific to a particular standard 
or development platform (for instance, Android or Apple iOS). 
Middleware can often be reused in many other applications. 
Another important feature of adding middleware to applications 
is that it makes it possible to incorporate future standards and 
platforms easily into your application. Figure 2-3 shows how 
middleware development fits into the system design flow.

Courtesy of Altera Corporation.

Figure 2-3:  Middleware in the system design flow.
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Replacing functional blocks 
with existing IP
Looking at the block diagrams, it seems like your work is cut 
out for you when it comes to building and integrating your 
applications into the system. But FPGA manufacturers have 
learned over the years that most systems require many of 
the same types of functionality. Functionality such as net-
work data I/O, graphics processing, and microprocessors is 
commonly needed, so it doesn’t make sense for each system 
designer to design and build these components. It makes 
much more sense for these types of functionality to be avail-
able out of the box. In recent years, FPGA manufacturers have 
been including such common functionality or intellectual 
property (IP) into their products. This IP can be in the form 
of hardware built into the chip, software provided to the user, 
or — just for FPGAs — hardware designs that the user can 
drop into the programmable logic. Now, you can replace parts 
of the blocks in the block diagram with existing IP — the work 
that has already been done for you. Figure 2-4 shows an illus-
tration of where existing IP fits into the design diagram.

Courtesy of Altera Corporation.

Figure 2-4:  Replacing functional blocks with existing IP.

The solid rectangle shows the effect of using hardware and 
programmable-logic IP: Many of the Implement Hardware 
and Verify Hardware steps are done for you. In addition, the 
dashed rectangle in Figure 2-4 shows where the existing IP fits 
into the design diagram. Here it replaces part of the work in 
the writing of applications and middleware with functionality 
implemented for you.
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Coding the missing blocks 
Existing IP can only go so far by implementing some common 
functionality, for example, accessing GPS data for an on-board 
navigation system. The rest of the field programming work 
of the FPGA is left up to the designer. After all, you want it to 
exactly fit your applications, right?

Programming modern FPGAs is much easier than you might 
think. The steps to programming an FPGA include identify-
ing any blocks of the design that you actually want to design 
yourself, choosing a hardware description language (HDL), 
writing the code in a text editor, synthesizing (more on that 
later) the design, placing and routing the design, then  loading 
the design onto the FPGA itself. After the design is loaded 
onto the FPGA, it may require a cycle of debugging to fix errors 
in functionality.

 You’ll come across the word bug in the technical jargon of 
software and hardware development. A bug is an inexplicable 
defect in computer software that produces an incorrect or 
unexpected result. The term debugging refers to eliminating 
defects until the whole design runs according to its required 
functionality.

Once you’re happy with how the design works, the next steps 
are to document the program and finally ship it to the customer.

Verilog is a common HDL used in creating designs for FPGAs. 
Verilog has a syntax very similar to the commonly used, 
general-purpose programming language called C. But instead 
of defining a program to run on a computer, Verilog, VHDL, 
and other hardware description languages describe the 

The real bug in bug
If you’re really into word origins, 
then you’ll be fascinated to know 
that the first use of the word “bug” 
in software was attributed to com-
puter pioneer Grace Hopper. In 1947, 

she uncovered a moth trapped in a 
relay of an electromechanical com-
puter and referred to the resulting 
glitch in the program execution as 
a bug!
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hardware — the interconnected network of gates, registers, 
and wires — that the designer wishes to create in the FPGA. 
You write your Verilog programs in the proper syntax using a 
simple text editor.

After you write the HDL design, the next step is to compile the 
HDL design. In FPGA programming, a synthesis tool takes the 
HDL design as input and converts it into a network of gates, 
registers, and wires configured to implement the functions the 
HDL describes. Then additional processes select which particu-
lar gates, registers, and wires to use in the FPGA and create a 
programming file that will configure the FPGA when it powers up.

So your HDL code gets mapped directly into the physical hard-
ware elements available on the selected FPGA device. In micro-
processor programming, program logic gets mapped into a list 
of processor instructions that the processor must execute. So 
it is quite a different — and wonderful — feature that you can 
convert your logic directly to silicon gates for execution.

During this process, the design tools may also link into the 
design of the hard IP — the predefined blocks of hardware 
already embedded in the FPGA. In the modern tool flow, you 
only have to specify whether you want to use hard or soft IP 
blocks and how you want them connected. You only need to 
write HDL code for any blocks that aren’t already available as IP.

Verifying the system design
After you compile your code, test it before deploying onto your 
FPGA. In the old days, designers tested their designs for much 
simpler programmable-logic chips by simply trying them out 
to see if they worked. But because of the complexity of modern 
FPGAs, plugging-and-trying as an early debug tool isn’t feasible.

Debugging an FPGA design is typically done in a simulation envi-
ronment. Simulators are software applications that (as you might 
expect) simulate the behavior of your design. But the simulation 
is done using software where you can see what the individual 
registers are doing before you put the design into the FPGA.

Debugging and verifying code is typically repeated until you’re 
certain that the HDL code works as intended. Most developers 
use what is called a testbench as a tool to verify that the FPGA 
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will work when attached to the real world. A testbench can be 
a mix of software simulation and actual hardware — designed 
by you — that makes up a model of the system that will contain 
your FPGA. Most FPGAs contain tens of thousands or hundreds 
of thousands of gates, so you can’t test all of them. Instead, a 
testbench focuses on the most meaningful gates that contain 
the critical areas of your design. Simulation environments help 
you to isolate particular areas and add debugging aids in those 
areas so you can get your design working the way you want.

 Any good software application requires extensive documenta-
tion that tells the customer or end user exactly how the appli-
cation is defined, and brings up any caveats, warnings, and so 
on. The documentation requirements are the same for FPGAs 
as in any microcontroller-based programming; of course, the 
contents will differ greatly.

Mapping the system into  
FPGA hardware
In the end, the bits that have been synthesized must be loaded 
into the FPGA to implement the gates of the system.

Like any system, if the hardware is correct, the design can 
evolve to include bug fixes and feature enhancements. The 
ability to edit the HDL code allows for design, debug, and veri-
fication in the same environment, which helps you get a faster 
time-to-market using an FPGA.

Trying out the design  
in the system
Once the design is programmed into the hardware, ensure 
that everything works as it is supposed to. What does work-
ing really mean for an FPGA? This stage is sometimes called 
closure. And, as with any hardware device, certain perfor-
mance criteria are expected. In many applications, power 
consumption is an important design criterion. Think of your 
smartphone, for example. Smartphones have strict power 
requirements so that they can maintain an acceptable battery 
life. You wouldn’t want your smartphone to be a power hog; 
otherwise you’ll find your battery dead after a short period of 
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use. Speed is another important criterion. Test to ensure each 
net (wire connection between gates) meets its timing limit. 
Finally, ensure that every clock and power pin is connected 
on your FPGA.

In the FPGA design-tool environment, you can enter your 
design, select blocks of IP to include, and convert the design 
into the hardware elements that actually exist in the FPGA. 
Then, while the design is still in software and easy to test, 
you can verify that it works as expected, that it works at the 
required speed, and you can even estimate how much power 
the design will consume.

Now comes the magic: You can load your tested design into the 
target FPGA on your prototype board, power up the system, and 
verify that everything is working as expected. You now have 
custom hardware to exactly fit your requirements — months 
before you would receive the first sample chips of an ASIC.
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Chapter 3

FPGAs as Systems
In This Chapter
▶ Understanding FPGAs as functional building blocks

▶ Absorbing the system into the FPGA with SoCs

T 
his chapter shows how FPGAs are used in the real world. An 
FPGA is really a functional building block of a system, and 

as FPGAs grow larger, the whole digital system can be absorbed 
into an FPGA, making it a system on a chip (SoC).

In this chapter, I examine the concept of an electronic system. 
Then I take you through the bewildering complexity of SoCs in 
a high-end car.

FPGAs in System Design
This section gives you a deeper look into the system design 
process and how FPGAs play an important role (I talk about 
some of the basics in Chapter 2).

Figure 3-1 shows the traditional model of system design. The 
diamond shapes you see between each block represent decision 
points in the process.

Courtesy of Altera Corporation.

Figure 3-1:  System design with decision points.
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 The decision points in the system design are the points where 
you have to ask some questions such as:

 ✓ What does the system have to do? This question appears 
during the requirements definition phase and is the fun-
damental question. The answer to this question is often 
provided by the product manager in coordination with the 
customer and drives the requirements gathering phase.

 ✓ Can I use my existing design with changes? Often, 
an existing system design is in place that, with some 
changes, may meet the requirements of the system.

 ✓ How much of the system can I leave in software? This 
is an important question asked during the design and 
implementation phase. The amount of the system that 
can be left in software determines what types of hard-
ware can be used. FPGAs and microcontrollers can be 
used to program the software.

 ✓ How much hardware can I buy off the shelf? Many times, 
a functional block of your system design may already be 
implemented in a commercially available hardware device 
(known as off-the-shelf ). If that’s the case, it may be more 
economical to purchase this hardware, or license it as IP, 
rather than implement the design in software or design 
custom hardware.

 ✓ Does it work yet? This is the fundamental question during 
the integration stage and must be answered “Yes” before 
the system can be deployed. If the answer is “No” then you 
must keep iterating over the design and implementation 
until you get it right.

In Figure 3-2, you can see that during the requirements defini-
tion, designers must consider the constraints on their design, 
such as performance, power consumption, and size. The 
functions of the system are also important — including which 
functions are visible, invisible, or locked. Finally, designers 
run experiments on their design. This process leads to early 
system estimation, which indicates the actual size and scope 
of the system and what it will take to implement.
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Courtesy of Altera Corporation.

Figure 3-2:  Defining system requirements.

The design process for FPGAs is an iterative one — you 
start with an idea of the system and then refine the idea into 
definitions of transactions. A transaction might include input, 
processing, and output. You can think of a transaction just like 
a bank transaction where you hand money over to the teller, 
the teller takes the money, and then adds the money to your 
account. Basically, a transaction is anywhere in the system 
where information is shared between two components of 
the system.

 After you define the transactions, you implement them, and 
then verify that they work and meet the functions and con-
straints you established at the start. This is another iterative 
process that requires deciding which functions will be done 
in hardware and which in software, which can be done with 
existing IP, and which will have to be newly written.

Automotive Electronics  
Systems with FPGAs

This section examines a real-world example of a system. In 
fact, you may have driven this system to work this morning. I 
show how SoCs — many of which could be FPGAs — fit into a 
modern car.
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Drivetrain
Consider the components that make up a car’s drivetrain, and 
how under regulatory, safety, cost, and feature pressures they 
have all become electronic:

 ✓ Engine: Electronics in the engine control the fuel, igni-
tion, and valves based on power demand, emissions, 
smoothness, starting cycle, and strategy.

 ✓ Transmission: Modern transmissions include electrical 
systems to control gear ratio, shifting sequence, signals 
based on speed, power demand, and engine rotations 
measured in revolutions per minute (RPMs).

 ✓ Brakes: For safety, electronic systems — not just the 
pedal on the floor — control the braking force.

 ✓ Steering: High-end automobiles have sophisticated 
power steering features that control the ratio, feedback, 
and angle of steering based on many inputs.

 ✓ Tires: In recent years, advancements in automobiles 
include electronic sensors that monitor tire pressure 
so that drivers know when to inflate their tires if 
needed — improving both fuel economy and tire life.

Infotainment
Infotainment is a nifty word used to describe the information 
and entertainment systems in automobiles. Many cars have 
sophisticated electronic infotainment features such as:

 ✓ Displays and controls: Today’s cars have electronically 
controlled speedometers and other readouts.

 ✓ Entertainment: Modern cars have advanced features 
such as digital AM/FM radio, satellite radio, CDs, and dig-
ital audio players where you can store your entire music 
library. There is sometimes also a digital video system 
that will keep your kids happy during those long road 
trips!

 ✓ Comfort: Now, the driver and passengers each have access 
to the lighting and multizone climate control systems so 
they can be as hot or cool as they want without impacting 
others in the same car.
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 ✓ Access control: Cars today come equipped with power 

locks, doors, windows, and security systems. There are 
also common safety features like window and door lock 
controls that keep your children from opening doors and 
windows while the car is in motion.

 ✓ Passive safety: Safety systems know how many occupants 
are where in the car, and make appropriate preparations if 
they sense an impending collision.

Driver assistance
Driver assistance includes some of the coolest technology that 
has come along in automotive design in recent years. It makes 
cars safer than ever! Driver assistance systems include:

 ✓ Lights, back-up, lane-exit, and collision avoidance: Cars 
often come equipped with advanced lighting systems, 
indicators, and heads-up displays that warn the driver 
when the car swerves outside of the lane or is about to 
collide with another vehicle or object.

 ✓ Sensors including cameras, lasers, and radar: These sen-
sors are used to allow drivers to see in their blind spot 
when backing up or changing lanes, which drastically 
reduces the chances of an accident.

Importance of FPGAs
Today, most automotive systems depend on low-cost micro-
controllers that operate at the point of sensing or action. The 
trend in automotive design is for consolidation of systems and 
for systems to become more autonomous. As systems become 
more sophisticated, their processing and memory require-
ments skyrocket. Consider sensor fusion with Kalman filters.

 Sensor fusion is the combining of sensory data from disparate 
sources so that the resulting information is better than what 
would be obtained from these sources individually, such as 
stereoscopic vision (the calculation of depth information 
by combining two-dimensional images from two cameras at 
slightly different viewpoints). A Kalman filter is an algorithm 
that uses a series of measurements observed over time that 
contain noise (random variations) and produces estimates 
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that are more precise than those based on a single measure-
ment alone. Kalman filters are commonly used for guidance, 
navigation, and control of vehicles.

As automobile systems consolidate, microcontrollers are being 
absorbed into SoC implementations. As these systems get 
smarter and more autonomous, SoCs are evolving into 
multicore processor/DSP clusters. In order to control the 
explosive growth in the number of models, changes during the 
model year, evolution in bus architectures, and the continuous 
demand for better security, the trend is moving toward SoC 
FPGAs being the only viable answer to solve these design chal-
lenges and needs for frequent updates.

 The car is only one example of how systems become more 
dependent on electronics, the electronics become more com-
plex and change more rapidly, and the need grows for SoCs 
that can change even during a model year. This same pattern 
shows up across a huge range of products with complicated 
behavior, from aircraft and trains to electric power grids to 
even home appliances. Yes, even your toaster.
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Chapter 4

The Future: Heterogeneous 
Computing and OpenCL

In This Chapter
▶ Looking at heterogeneous computing

▶ Examining OpenCL

I 
ndustry trends are driving FPGAs toward playing a big 
part in the heterogeneous computing paradigm. Open 

Computing Language (OpenCL) is an industry standard 
development platform used to program FPGAs in a hetero-
geneous environment.

This chapter walks you through why heterogeneous computing 
is necessary and the emergence of new languages for creating 
software to execute on them.

Heterogeneous Computing
Inside data centers, one of the major trends is a shift in the com-
puting architecture: from multicore CPUs to heterogeneous com-
puting. Heterogeneous computing refers to systems that use more 
than one type of processor to perform specialized processing 
capabilities. An example of a heterogeneous computing system 
is a graphics rendering system that uses a CPU and a graphics 
processing unit (GPU) to render 3D graphics on a computer. 
GPUs are especially adept at rendering 3D scenes and perform-
ing mathematically intensive computations on large datasets. 
CPUs are used in the background to perform operating system 
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and data networking tasks. Heterogeneous computing is becom-
ing more of the standard as systems consolidate and must work 
well with different processor architectures used in each.

 Parallel computing is the capability of computers to perform 
many calculations simultaneously based on the principle that 
large problems can be broken down into smaller problems 
and then solved concurrently (in parallel). Parallel comput-
ing comes in many different forms: bit-level, instruction level, 
data, and task-based. Parallel computing is no longer just 
the domain of high-performance computing like IBM’s chess- 
mastering Big Blue. As power consumption has become more 
of a design factor in embedded electronics, parallel computing 
has become the dominant paradigm in computer architecture, 
most commonly seen in the form of multicore processors.

Data parallelism focuses on the idea of separating data 
across multiple processors so that it can execute in parallel. 
Multicore processors often do this by farming out multiple 
instances of a program to each of the processors to execute 
these instructions simultaneously. Task parallelism has to do 
with a processor farming out computer code blocks known as 
threads across different processors to execute in parallel.

Why Use OpenCL on FPGAs?
The need for heterogeneous computing is leading to new pro-
gramming languages to exploit the new hardware. One example 
is the OpenCL first developed by Apple, Inc. OpenCL is a frame-
work for writing programs that execute across heterogeneous 
platforms consisting of CPUs, GPUs, DSPs, FPGAs, and other 
types of processors. OpenCL includes a language for develop-
ing kernels (functions that execute on hardware devices) as 
well as application programming interfaces (APIs) that define 
and control the various platforms. OpenCL allows for parallel 
computing using task-based and data-based parallelism.

In the last decade or so, processor hardware frequencies have 
hit a so-called power wall, which prevents higher frequencies 
from being achieved on processors. When’s the last time in 
recent years have you heard CPU manufacturers like Intel 
advertise the performance of their processors based on clock 
speed? Instead, CPU manufacturers have been busy adding 
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more processing cores to their CPUs and enhancing their 
instruction sets so several instructions can execute at the 
same time, speeding up program execution without requiring 
faster clock frequencies to do so. Software companies have 
been busy as well, developing software that allows chunks 
of computer code known as threads to execute in true paral-
lel fashion. The threads are executed on separate processor 
cores instead of the pseudo-parallelism of the past where 
threads weren’t executed on separate cores but time-sliced by 
the operating system to appear to be running in parallel.

 FPGAs are inherently parallel, so they’re a perfect fit with 
OpenCL’s parallel computing capabilities. FPGAs give you an 
alternative to the typical data or task parallelism by offering a 
pipeline parallelism where tasks can be spawned in a push-pull 
configuration with each task using different data from the previ-
ous task with or without host interaction. OpenCL allows you 
to develop your code in the familiar C programming language 
but using the additional capabilities provided by OpenCL. 
These kernels can be sent to the FPGAs without your having to 
learn the low-level HDL coding practices of FPGA designers. 
Generally, there are several benefits for software developers 
and system designers to use OpenCL to develop code for FPGAs:

 ✓ Simplicity and ease of development: Most software 
developers are familiar with the C programming lan-
guage, but not low-level HDL languages. OpenCL keeps 
you at a higher level of programming, making your 
system open to more software developers.

 ✓ Code profiling: Using OpenCL, you can profile your code 
and determine the performance-sensitive pieces that 
could be hardware accelerated as kernels in an FPGA.

 ✓ Performance: Performance per watt is the ultimate goal 
of system design. Using an FPGA, you’re balancing high 
performance in an energy-efficient solution.

 ✓ Efficiency: The FPGA has a fine-grain parallelism archi-
tecture, and by using OpenCL you can generate only the 
logic you need to deliver one fifth of the power of the 
 hardware alternatives.

 ✓ Heterogeneous systems: With OpenCL, you can develop 
kernels that target FPGAs, CPUs, GPUs, and DSPs seam-
lessly to give you a truly heterogeneous system design.
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 ✓ Code reuse: The holy grail of software development is 
achieving code reuse. Code reuse is often an elusive goal 
for software developers and system designers. OpenCL 
kernels allow for portable code that you can target for 
different families and generations of FPGAs from one 
project to the next, extending the life of your code.

Today, OpenCL is developed and maintained by the technology 
consortium Khronos Group.

 Most FPGA manufacturers provide Software Development Kits 
(SDKs) for OpenCL development on FPGAs.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.



Chapter 5

Five Applications of FPGAs
In This Chapter
▶ Taking a look at some real-world applications of modern FPGAs

F 
PGAs have come a long way since the old days, when 
implementing a complex system with an FPGA meant that 

you had to do lots of programming of the logic gates. Today’s 
FPGAs come with built-in capabilities, such as network inter-
faces, memory blocks, and even ARM cores. At Altera, those 
with built-in ARM cores are known as SOCs, a recognition of the 
role these powerful chips are playing. The field-programmable 
part is now less than half of the chip area. This chapter highlights 
how FPGAs are used in several areas of industry and technology.

Single-Device Motor Control
Motors and motor control are commonplace in any industrial 
design. When you go to any factory or industrial complex, 
you’ll find a variety of widely different machines with one 
thing in common — they’re powered by motors. Most motor 
control systems are designed with microcontroller technology. 
However, microcontrollers can fall short of the performance 
demands of sophisticated motor-control algorithms such as 
direct torque control (DTC) or sensorless field oriented control 
(SFOC), for example. DSPs have been used in the past to get 
around that problem, but are usually unable to cost-effectively 
match an FPGA when it comes to high performance. You can 
build a flexible, scalable, and high-performance motor control 
system in a single SoC FPGA (see Figure 5-1).
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Courtesy of Altera Corporation.

Figure 5-1:  Motor control.

One example is using an SoC FPGA to plug into a motor con-
trol module that comes with two independently controlled 
DC motors and a simple optical feedback system. The SoC 
FPGA includes a built-in processor that manages the feedback 
and control signals so that the two motors can move inde-
pendently. The processor reads the data from the feedback 
system and runs an algorithm to synchronize the movement 
of the motors as well as control their rotation speeds. By 
using an SoC FPGA, you can build your own IP that can be 
easily customized to work on other motor controls. There are 
several advantages to using an SoC FPGA for motor control 
instead of a microcontroller:

 ✓ System integration: Fewer parts lead to less material costs, 
lower power requirements, and fewer reliability challenges 
by integrating industrial networking, safety, power stage 
interfaces, and DSP control algorithms on a single device.

 ✓ Scalable performance: You can use a single scalable 
platform across an entire product line. SoC FPGAs allow 
you to achieve higher performance with faster and more 
advanced control loops that can increase efficiency and 
machinery lifetime.

 ✓ Functional safety: As automation takes more of the 
responsibility for running potentially dangerous equip-
ment, regulators are requiring the machine-control elec-
tronics to guarantee that no harm can result. With an SoC 
FPGA and the right design flow, you can reduce time and 
effort complying with these government and industry 
safety regulations.
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Television Broadcasting
Television broadcasters use a serial digital interface (SDI) stan-
dard to transmit uncompressed digital video on 75-ohm coaxial 
cable (the same kind that hooks your cable/satellite receiver or 
antenna to your television). With every improvement to video 
images, the standard has had to bump up its capacity. The 
latest standard is called the 3-Gbps (3G)-SDI, and is capable 
of moving 4K ultraHD signals around the studio. With all this 
change, here’s another area where FPGAs really shine! FPGA 
solutions come with a core transceiver that can function on 
all three SDI rates (SD SDI, HD SDI, and 3G-SDI) on the same 
transceiver.

 But much else has changed in the studio as well. New digital 
techniques help edit the video stream, improve or correct 
picture quality, and compress the image for transmission 
over cables or satellite links. The latest compression stan-
dard, H.265 (also known as the High-Efficiency Video CoDec) 
slashes the number of bits necessary to encode a movie or TV 
program. But it requires an enormous amount of computation. 
Many equipment vendors are finding that the best solution to 
pack the power into an SoC while responding to the pressure 
for rapid evolution — there is that combination again — is an 
FPGA. See Figure 5-2.

Courtesy of Altera Corporation.

Figure 5-2:  Broadcast.

Wireless Data: 3G and 3GPP 
LTE Infrastructure

Nothing has changed how people live and work more than 
the arrival of 3G wireless technology. It allows you to carry 
around those phones that not only let you make calls from 
wherever you are but also allow you to browse the web and 
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post Twitter updates from anywhere! The latest technology 
migration is from the 3G standards to the 3.5G networks, 
which include high-speed packet access (HSPA) and 3rd 
Generation Partnership Project (3GPP) long-term evolution 
(LTE) standards.

 Cellular wireless networks based on the 3GPP LTE standard 
are expected to provide a true mobile broadband experience 
that surpasses the existing high-speed packet access technol-
ogy of 3G systems. The key requirements for LTE base stations 
and mobile operators are scalable form factor, low power 
consumption, low cost, and programmability as they strive to 
reduce their expenses while expanding and upgrading their 
networks. Manufacturers are also looking to increase produc-
tivity and time-to-differentiate as keys to introduce successful 
products and get a competitive edge.

Many FPGAs now come equipped with built-in low-latency intel-
lectual property (IP) for LTE networks as well as productivity 
enhancing tools to allow manufacturers to leverage FPGAs 
advantages of performance, power, price, and productivity 
to focus their efforts on product differentiation and not on 
the mechanics of programming the nuts and bolts of LTE 
infrastructure. See Figure 5-3.

Courtesy of Altera Corporation.

Figure 5-3:  LTE.
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Automotive Driver Assistance 
Cameras

One of the big areas of growth in the automobile industry 
is the explosion of technology-driven features. Even lower-
priced automobiles come equipped with fancy gadgets 
like navigation systems, video entertainment systems, and 
cameras.

Driver assistance and backup cameras are some of the most 
important safety innovations and help make cars safer than 
ever. The peace of mind that comes with knowing that all is 
clear behind your car when backing up is priceless.

Forward camera systems are made up of high-speed video 
processing, complex sensor fusion, and real-time data analy-
sis that enable the automobile to perform corrective action 
in cases like when the driver nods off and veers into another 
lane. Forward cameras do their job by integrating with dif-
ferent sensors such as radar and laser sensors. Each type of 
sensor is different in how it provides data, posing a design 
challenge for multiple architectures.

 Traditional DSP processors or microcontrollers don’t have the 
power to do real-time video processing and analytics at the 
same time. Moreover, HDR or high dynamic range, which is a 
requirement for the camera to see equally well into both bright 
and dark areas of a scene, is a necessity for video analytics to 
be accurate. HDR processing can as much as triple the demand 
for video signal processing power as compared to a traditional 
non-HDR camera, taking the performance requirements out of 
reach for all but the most expensive DSPs. Instead of DSPs or 
microcontrollers, you can integrate the entire camera system 
in a single, low-cost SoC FPGA. You can optimize system per-
formance by developing hardware parallel processing engines 
using FPGA logic and integrating with software algorithms run-
ning on the hard processor system of an SoC FPGA. Figure 5-4 
shows a diagram of an SoC FPGA as part of an automobile 
vision system.
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Courtesy of Altera Corporation.

Figure 5-4:  The FPGA in an automobile vision system.

High-Performance Computing
The high-performance computing (HPC) market is one of 
the fastest growing areas of computing today. It is extremely 
important in many industries, such as financial, medical imaging, 
bioscience, military, and many others that can benefit from the 
logic and memory resources in FPGAs to develop application-
specific coprocessors. Think about financial markets, for exam-
ple, and the mind-boggling amounts of data that go from place 
to place for all of those trades, forecasts, and price calculations. 
Fractions of a cent matter in these transactions, so high-speed, 
accurate floating-point arithmetic is absolutely essential.

In HPC, floating point is a numerical representation where a 
series of digits or bits represent real numbers. Applications 
require floating-point data types for more accurate results 
than integer calculations can produce. As mentioned in 
Chapter 1, floating-point operations require more processor 
instructions, and hence more power. Common floating-point 
applications include:
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 ✓ Fast Fourier transform (FFT)

 ✓ Radar

 ✓ Bioscience

 ✓ Finite impulse response (FIR)

 ✓ Financial options trading

 ✓ Matrix math (used extensively in 3D graphics and image 
processing)

 ✓ Molecular dynamics

 ✓ Seismic and medical imaging

 A coprocessor is a computer processor that is used to supple-
ment the functionality of the primary or central processor 
(CPU). Coprocessors are typically used to perform floating-
point arithmetic, signal processing, string processing, encryp-
tion, or I/O interfacing to peripheral devices. Coprocessors 
take on computationally intensive operations, freeing the CPU 
to service the core functions of the computer.

All HPC markets require coprocessors to provide a productiv-
ity, performance, and power advantage, and in some cases, 
FPGA coprocessors accelerate algorithms by a factor of 100.

The good news is that Altera FPGAs build in not just DSP func-
tions, but floating-point hardware, so that programmers don’t 
have to convert their programs from floating-point format to 
integer format before running them on an FPGA-accelerated 
server. This capability is a huge boon in categories such as:

 ✓ Appliances: Database and financial market acceleration.

 ✓ Functions: Random number generators for financial 
markets, one-million point FFT for military and signal 
processing applications.

 ✓ Algorithms: SRCs CARTE, Impulse, and AutoESL system 
generating algorithms.
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Case study: The Monte Carlo  
Black-Scholes method

One of the most important bench-
marks in financial markets is the com-
putation of option prices via the Monte 
Carlo Black-Scholes method. In finan-
cial terms, an option is a contract that 
gives the buyer the right, but not the 
obligation, to buy or sell an asset at a 
specified price on or before a given 
date. The Monte Carlo Black-Scholes 
technique is based on conducting 
random simulations of the underly-
ing stock price and averaging the 
expected payoff over millions of differ-
ent paths. The accompanying figure 
shows a graphical representation of 
this method.

In most computer simulations, 
designers use some type of random 
number generator to simulate the 
data input into the simulation to 
model the randomness of the real 
system. In the Monte Carlo Black-
Scholes method, modelers typically 
use a random generator known as 
a Mersenne twister. The Mersenne 
twister random number generator is 
a very fast and high-quality genera-
tor of pseudorandom numbers — it’s 
ideal for simulations. This sequence 

of random numbers is fed to an 
Inverse Normal Cumulative Density 
Function (a probability function to 
specify the distribution of random 
numbers) in order to produce a 
normally distributed sequence of 
numbers. These random numbers 
are used to simulate the movement 
of stock prices using Geometric 
Brownian motion (an algorithm com-
monly used to predict stock prices). 
At the end of each simulation path, 
the call option payoff is recorded and 
averaged to produce an expected 
value for the payoff. The entire algo-
rithm can be implemented in about 

300 lines of OpenCL code that is 
portable from an FPGA to a CPU and 
GPU. The FPGA solution outperforms 
both the CPU and GPU in power, per-
formance, and efficiency as shown in 
the accompanying figure.

In the figure, the FPGA is compared 
with a CPU and GPU in three crite-
ria: power consumption, the number 
of simulations per second, and the 
rate of power-efficiency simulations 
per second. FPGAs are inherently 

Courtesy of Altera Corporation.
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parallel  —  meaning they can be 
coded to break complex calculations 
into computations that can be done in 
parallel. FPGAs can do more opera-
tions in parallel than can CPUs and 

GPUs, resulting in much faster execu-
tion and increased power efficiency, 
both of which are essential in elec-
tronic systems design.

Courtesy of Altera Corporation.
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