

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FPGAs

Altera Special Edition

by Andrew Moore

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FPGAs For Dummies®, Altera Special Edition
Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written
permission of the Publisher. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com, Making
Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley &
Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without
written permission. Altera and the Altera logo are trademarks or registered trademarks of Altera
Corporation. All other trademarks are the property of their respective owners. John Wiley & Sons,
Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETE-
NESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES,
INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE.
NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITU-
ATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT
ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PRO-
FESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE
FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS
WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For Dummies
book for your business or organization, please contact our Business Development Department in the
U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/go/custompub. For
information about licensing the For Dummies brand for products or services, contact
BrandedRights&Licenses@Wiley.com.

ISBN 978-1-118-94220-8 (pbk); ISBN 978-1-118-94413-4 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Project Editor: Jennifer Bingham

Acquisitions Editor: Katie Mohr

Editorial Manager: Rev Mengle

Business Development Representative: Karen Hattan

Project Coordinator: Melissa Cossell

Special Help: A large number of contributors from Altera Corporation

Publisher’s Acknowledgments
Some of the people who helped bring this book to market include the following:

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com

Table of Contents
Introduction .1

About This Book .. 1
Icons Used in This Book .. 1
Beyond the Book .. 2

Chapter 1: FPGAs for Everyone .3
So Why Would You Need an FPGA, Anyway? 4
Examining an FPGA .. 6

The building blocks of an FPGA 6
Explaining FPGAs creatively ... 8

Comparing FPGAs and ASICs .. 10
Costs and flexibility ... 10
Design time risk reduction versus speed 10

FPGAs Are Surprisingly Easy to Use 11
Hard IP... 11
Parallel operation and order reduction 12

Chapter 2: What’s in an FPGA, Anyway? 13
The Basics – Programmable Fabric and I/O 13
Scaling Upward ... 16
Hard IP and Integrated CPUs .. 17
Modern Design Flow of FPGAs ... 17

Creating a functional block diagram 18
Replacing functional blocks with existing IP 20
Coding the missing blocks ... 21
Verifying the system design ... 22
Mapping the system into FPGA hardware 23
Trying out the design in the system 23

Chapter 3: FPGAs as Systems .25
FPGAs in System Design .. 25
Automotive Electronics Systems with FPGAs 27

Drivetrain .. 28
Infotainment ... 28
Driver assistance ... 29
Importance of FPGAs ... 29

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FPGAs For Dummies, Altera Special Edition iv

Chapter 4: The Future: Heterogeneous
Computing and OpenCL .31

Heterogeneous Computing ... 31
Why Use OpenCL on FPGAs? .. 32

Chapter 5: Five Applications of FPGAs 35
Single-Device Motor Control ... 35
Television Broadcasting.. 37
Wireless Data: 3G and 3GPP LTE Infrastructure 37
Automotive Driver Assistance Cameras 39
High-Performance Computing .. 40

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

F
ield programmable gate arrays (FPGAs) are integrated cir-
cuits that enable designers to program customized digital

logic in the field. FPGAs have been around since the 1980s and
were originally conceived to give all design teams the ability
to create custom logic. In the early days, using an FPGA in
your design meant you had to do a lot of programming just to
get your FPGA to perform simple functions, so most design-
ers avoided them. If you haven’t looked into FPGAs since your
university studies way back when, you’ll want to take another
look at them.

The FPGA has evolved from a useful but humble interface
device into a system-level integrated circuit (IC) with its own
microprocessors, memory blocks, and interfaces. It’s the next
big thing.

Now would be a great time to get an inexpensive development
kit, download free tools, and begin to explore this world for
yourself. And this book will help you understand the practical
uses of FPGAs.

About This Book
This book is for you if you’re a system designer, an experi-
enced engineer, or someone who hasn’t seen FPGAs since
your days in engineering school.

This book was written with cooperation from Altera
Corporation.

Icons Used in This Book
Throughout this book, I occasionally use special icons to call
attention to important information. You won’t see the typical
smiley faces or emoticons, but you’ll definitely want to stop
and pay attention! Here’s what you can expect.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

2 FPGAs For Dummies, Altera Special Edition

 This icon points out information that you’ll want to put into your
cache, your memory, or whatever that thing is you use to keep
information, like birthdays and phone numbers, for later use!

 Who knows? You might come away with some neat information
you can use to impress your friends at parties!

 No, I’m not asking you to take care of your servers and bartend-
ers! You should stop and take notice because these are bits and
pieces of knowledge that could save you aggravation later on.

Beyond the Book
Although this book is stuffed with information, I can only cover
so much in 48 pages! So, if you find yourself wanting more
information about FPGAs, just go to www.altera.com. There
you can find more information about Altera and its FPGAs. You
can also view videos and webinars, download demos, read data
sheets and white papers, and much more!

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://www.altera.com/

Chapter 1

FPGAs for Everyone
In This Chapter
▶ Introducing FPGAs

▶ Discovering how FPGAs do what they do

▶ Examining the differences between FPGAs and ASICs

W
elcome! If you’re reading this chapter, it’s a good bet
that you’re an engineer who may have learned about

field programmable gate arrays (FPGAs) in the past, but you
now want to know more. Maybe you’re wondering how you
can use them with your designs. In this chapter, I introduce
you to FPGAs and explain what problems they solve. I also go
over how they do what they do and discuss design tradeoffs
and the truth about FPGA operation.

Compared to other ways of building hardware, FPGAs have
two huge things going for them. First, they enable you to build
exactly the hardware you need, instead of having to use the
same application-specific standard product (ASSP) all your
competitors are using, or having to undertake the time, cost,
and risk of an application-specific integrated circuit (ASIC)
design.

But just as important, that ability to customize the FPGA
means that often, in an FPGA, you can do operations in a sim-
pler, faster, more energy-efficient way than they could be done
in the microprocessor cores of an ASSP.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FPGAs For Dummies, Altera Special Edition 4

So Why Would You Need
an FPGA, Anyway?

I’m glad you asked! An FPGA is a semiconductor device on
which the function can be defined after manufacturing. An
FPGA enables you to program product features and functions,
adapt to new standards, and reconfigure hardware for specific
applications even after the product has been installed in the
field — hence the term field programmable. And gate arrays
are two-dimensional arrays of logic gates. If you get enough of
these things put together, you can make those simple calcula-
tions add up to do something meaningful.

In less technical terms, an FPGA allows you flexibility in your
designs and is a way to change how parts of a system work
without introducing a large amount of cost and risk of delays
into the design schedule.

A simple example is a rear-view camera designed for a car. If
your camera system takes 250 milliseconds from the time the
image sensor sees the image until the image frame actually
appears on the display, and a change in government regula-
tions requires that this delay or latency be no more than
100 milliseconds, you could find ways to adjust the image
signal processing pipeline in an FPGA to comply with the new
latency requirements. This would be almost impossible to
do with a microprocessor-based system. In this example, a
company can gain a big advantage using an FPGA because it
doesn’t have to redesign parts or buy all new processors.

In the early days, FPGA circuits were very large and you
couldn’t fit many onto a single chip. All a designer could do
was build an interface with an FPGA and customers could
reprogram that interface to do something different (for
example, changing an interface that operates on a keyboard
input to one that handles input from a touchscreen device).
Soon, however, designers realized they could build entire sub-
systems out of FPGAs, which meant designers were no longer
restricted to only using ASICs to implement these subsystems.
Because circuit components keep getting smaller and smaller,
designers can put many more devices on the same board

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: FPGAs for Everyone 5
space — allowing for more sophisticated functionality and
faster arithmetic, which in turn leads to faster computation
and less power consumption.

 Modern FPGAs consist of mixes of configurable static random
access memory (SRAM or Flash), high-speed input/output pins
(I/Os), logic blocks, and routing. More specifically, an FPGA
contains programmable logic elements called, naturally,
logic elements (LEs), as well as a hierarchy of reconfigurable
interconnects that allow the LEs to be physically connected to
one another. You can configure LEs to do complex functions
or simply perform basic logic gates, such as AND and OR.
Most FPGAs also contain memory blocks (for more on these
topics, see the section “The building blocks of an FPGA”).

ASICs and ASSPs
An application-specific integrated
circuit (ASIC) is an integrated circuit
composed of electrical components,
such as transistors, capacitors,
and resistors, usually fabricated
on a wafer composed of silicon or
other semiconductor material that
is customized for a particular use.
Two examples of ASICs are a voice
recorder or a high-efficiency Bitcoin
miner. Over the years, the size of
components used in ICs has shrunk,
meaning that more complex circuits
can be created using the same
space. Because of this shrinking of
components, some ASICs have now
become large enough to contain
multiple microprocessors and other
complex subsystems.

Application-specific standard prod-
ucts (ASSPs), on the other hand, are
ICs that are dedicated to a specific
application market and sold to more
than one user (and hence, stan-
dard) in contrast to ASICs, which

are designed and sold to a single
customer. Some examples of ASSPs
are microcontrollers and the system
chips at the hearts of many smart-
phones and tablets.

ASICs and ASSPs are specifically
designed for dedicated functionality.
Because of the tight control of their
configuration, ASICs and ASSPs are
very compact, inexpensive, fast,
and low-power, which are all highly
desirable traits in electronics design.
Because their function is hard-wired
at the time of manufacture, it isn’t
easy to change the functionality of
a small part of the circuit. In fact,
because these circuits are perma-
nently fabricated on silicon wafers,
you simply can’t take apart the cir-
cuitry and replace it with something
else. If you need to change some-
thing in the design, you have to
scrap the whole chip and start from
scratch.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FPGAs For Dummies, Altera Special Edition 6
Today, hard intellectual property (IP) can be built into the
FPGA fabric to provide rich functionality while reducing
power and lowering cost. Some examples of the hard IP
included in today’s FPGAs are memory blocks, calculating cir-
cuits, transceivers, protocol controllers, and even central pro-
cessing units (CPUs). It is important to remember, however,
that this hard IP isn’t customizable like the rest of the FPGA!
Integrating hard IP — for example, a digital signal processor
(DSP) — frees designers from reinventing the wheel each time
they need to add these common pieces to their systems. FPGA
manufacturers can get away with weaving hard IP compo-
nents into FPGAs because these functionalities have become
commodities, and, therefore, quite uniform throughout most
electronic systems.

Examining an FPGA
The following sections discuss FPGA components in detail
and explain what an FPGA is in simpler language, in case it has
been a long time since you first learned about FPGAs and have
forgotten some of the details.

The building blocks of an FPGA
You can build anything digital from three simple pieces: a
wire, a logic gate, and a register (see Figure 1-1). A register
remembers a piece of information until it is told to remember
something else. A logic gate performs simple logic operations
on signals, and a wire connects these other pieces.

Courtesy of Altera Corporation.

Figure 1-1: The building blocks of a digital system.

Logic gates
Logic gates perform the core functionality of digital circuits,
which means they perform simple logic on inputs — electrical

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: FPGAs for Everyone 7
pulses that your computer uses to represent 0s and 1s (more
on that later). On their own, these simple operations don’t do
much, but when you put thousands or even millions of these
together you can do something really powerful. Your comput-
er’s CPU is made up of billions of logic gates that allow your
computer to do all the cool stuff that it does.

 In order to perform as functional circuits, logic gates use a type
of arithmetic called Boolean algebra. Boolean algebra was first
introduced in 1854 by George Boole. Unlike elementary algebra,
where the values of variables are numbers and the main opera-
tions are addition and multiplication, the primary operations of
Boolean algebra are the conjunction AND, the disjunction OR,
and negation NOT. The values of variables in Boolean algebra
are the truth values true and false.

The basics of Boolean algebra operations are as follows:

 ✓ And (conjunction) is denoted as x AND y, which yields a
result of true if both x and y are true, and false otherwise.

 ✓ Or (disjunction) is denoted as x OR y, which yields true if
either x or y is true, and false if neither x nor y is true.

 ✓ Not (negation) is denoted as NOT x, which yields true if x
is false and false if x is true.

One of the most common uses of Boolean algebra happens to
be in digital logic design. It turns out that Boolean algebra maps
directly to digital circuits in which inputs are 0s and 1s or false
and true. By connecting more and more of these logic gates that
perform simple Boolean arithmetic on 0s and 1s, you get systems
that can perform advanced functions. For instance, logic gates
guide the Mars Rover, allow billions of devices to be connected
to Global Positioning Systems (GPS), and even power your favor-
ite game on the iPhone where you launch birds at bad piggies!

Registers
Registers are simple devices that store pieces of data for use
in the future. Think of registers as a short-term spot for plac-
ing data that you can access quickly; this is where you would
place a phone number given to you moments before dialing. As
soon as you try to remember something else, like the time you
have to be at an appointment, that telephone number you tried
to remember earlier is replaced with the starting time of the
appointment. Registers keep whatever information is given to
them until they’re told to forget it and keep new information.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FPGAs For Dummies, Altera Special Edition 8

Wire
The third piece of all things digital is the wire used to connect
all the registers and logic gates. These elements must be con-
nected for the entire system to do what you want, from simple
tasks, such as adding 1 + 2, all the way to more complex tasks,
such converting pulses from blue LEDs reading a Blu-ray disc
into crisp, high-definition images on your television screen. You
can build any digital system you want, with the right amount of
logic gates and registers with wires to connect them all.

Explaining FPGAs creatively
But hold on a second! All this talk of logic gates, registers, and
wires sounds really technical and is pretty abstract. Do you
need to be an experienced electrical engineer to understand
an FPGA? No! You can use two different metaphors to explain
how FPGAs work. The first is the bead and string metaphor.
The second is the LEGO metaphor.

So, what do beads and LEGO pieces have to do with the design
of digital electronic systems? It turns out that beads and LEGO
pieces illustrate two approaches to using logic elements to
build electronic systems.

Beads and string
The method represented by beads and string gives the designer
the finest control of the pattern by using small beads and thin
string to connect them all. The result is a beautiful, very complex
pattern. But this fine-grained control comes at a cost. It is very
difficult, if not impossible, to change the pattern even slightly
without undoing all your work and starting over. When you map
the beads and threads to digital electronics design, you come up
with a design that very much resembles ASICs or ASSPs.

Imagine a beadwork pattern created from many beads of dif-
ferent colors arranged in different patterns and connected
by thread. Using these simple components, you can create
almost any type of pattern from the most simple to the most
complex depending on the number of beads, their colors, and
how you choose to arrange them.

Now, imagine that the beads represent both registers and
logic gates; and imagine the string as wire. Just like the beads
and string, these elements produce a system — a system that

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: FPGAs for Everyone 9
can perform all sorts of computations from the very simple all
the way to the very complex. You can think of different bead
colors as representing the different types of logic gates such
as AND, OR, or NOT, and you see how these simple arithmetic
operations can become very complex calculations much like
the arrangement of simple colors of beads can become very
intricate patterns once put together with string.

By arranging beads in patterns, you can create beautiful
designs, but what happens when you want to change the
patterns into something else by rearranging the beads or
changing the colors of the beads? This is where things get
complicated! In order to change the patterns, you have to
untangle all the string in order to change things around. You’ll
soon find that the threads are so closely connected that you
just can’t undo part of the design. Very quickly, you’ll see the
whole design must come apart in order to change the pattern
even slightly. Well, that’s not very flexible, is it?

LEGOs
The approach represented by LEGOs is a bit different. LEGOs
are relatively big and chunky and can only fit together at certain
points on the bricks. With LEGOs, it is very easy to change a
small part of the design without tearing it apart and starting
all over again. The LEGO design isn’t quite as elegant and intri-
cate as the pattern produced by beads and thread. You can,
however, change parts of the design without ripping apart the
whole thing and starting all over, which brings me to the second
approach to digital electronic design: FPGAs.

Perhaps you’ve spent countless hours as a child or with your
children building towers, firetrucks, and spaceships with LEGO
pieces. Similarly, you can use LEGOs to create a nice representa-
tion of digital systems by building a table and pretending that
some bricks are logic gates, some are registers, and others are
the wires used to connect them all.

Now imagine that someone tells you she wants to change the
pattern on the lower-right side of the table and, perhaps, to
change the colors of the LEGOs. Because the LEGO bricks
are all interconnecting pieces, you can easily remove just
the pieces in the lower-right corner and replace them with a
group of different LEGOs. The rest of the LEGOs on the table
are left intact and you don’t have to redo the entire design
just to change a small part.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FPGAs For Dummies, Altera Special Edition 10

Comparing FPGAs and ASICs
FPGAs are generally more flexible and cost-effective than
ASICs. In the following sections, I explain why.

Costs and flexibility
Using FPGAs, you can implement any logical function that an
ASIC can do but with the distinct advantage of updating the
functionality after chip manufacture, which is desirable for
many applications. FPGAs are more cost-effective than ASICs
because the customer can program FPGAs according to its
requirements instead of contracting a vendor to design and
construct an ASIC to meet its needs.

Design time risk reduction
versus speed
If you set out to use the most advanced semiconductor process
in the world, no matter the cost, you could always design an
ASIC that would run faster than the fastest available FPGA. But
almost no one uses the most advanced process: Doing so would
be risky, very difficult, and witheringly expensive. In fact, only a
handful of ASSP companies leap on a new process as soon as it’s
available. Everyone else uses a process that is one, two, or three
generations old. And the fact is, the fastest FPGA you can get can
compete directly with those older ASIC processes. And the FPGA
brings reduced design work and far less risk.

If, for example, you’re designing a system with specific power
efficiency and performance requirements and are planning to
use an older 65 nanometer (nm) ASIC, did you know you can
achieve similar results with a current 20 nm FPGA?

And using the FPGA would shorten your design time, reduce
your risk of design errors, and offer a lower total cost of
ownership (TCO) than the ASIC. For most applications, the
FPGA’s power consumption will be acceptable for your needs.
Therefore, due to their lower TCO and greater flexibility,
FPGAs are often the best technological choice.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: FPGAs for Everyone 11
 Nanometers (nm) are a measure of the size of the transistors

on a chip. The transistors have been shrinking for decades.
See Chapter 2.

Choosing an FPGA for a system offers the designer greater
configurability as well as less risk of impact to the develop-
ment schedule because, as demonstrated by the LEGO anal-
ogy, small parts of FPGAs can be modified without impact to
the rest of the design.

FPGAs Are Surprisingly
Easy to Use

Some designers have the false impression that building a
system with a modern FPGA means you have to mess with
millions of logic gates and massive amounts of connections
just to do something useful. But if that were the case, FPGA
use wouldn’t be growing: Instead, there would only be about a
half dozen FPGA users left.

 The good news is that FPGA designers have done much of the
heavy lifting of adding commonly needed components like
clock generators, dynamic random access memory (DRAM)
controllers, peripheral component interconnect Express (PCI)
controllers, and even whole multicore microprocessors, so all
that you have to concentrate on is customizing those functions
that are specific to your application.

Hard IP
Earlier in the chapter, I mention that hard IP is intellectual
property built into the FPGA, such as DRAM controllers, PCIe
controllers, clock generators, and big blocks of memory. In
fact, there is so much hard IP in today’s FPGAs that they really
have become a system on a chip (SoC).

Not only are common functions that most system designers
need built into the hard IP of the FPGA, but even many less-
commonly needed functions like high-speed serial transceiv-
ers for radar or communications, and digital signal processor
(DSP) multiplier-accumulators for signal processing can be
included. Today, even dual-core ARM (ARM is a brand of
microprocessor designs) CPU subsystems may be built-in. In

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FPGAs For Dummies, Altera Special Edition 12
fact, today’s high-end FPGAs may have programmable logic
on only half the die area, the other half consisting of hard IP.
Designers now commonly start with an FPGA that has the IP
they need already built in and then use the programmable
logic to customize the FPGA to their particular application.

Parallel operation and
order reduction
Modern designers have become quite good at making tools
that are smart enough to reduce more complicated operations
into simpler ones (this is known as order reduction) and also
have the ability to perform a complex operation in a series of
instructions that operate simultaneously, which is known as
parallel operation.

So this all sounds great, but what does it really mean? A micro-
processor can do just about anything simply by executing its
instructions. If the program says to multiply, the microproces-
sor loads the instruction from memory, decodes it, loads each
number, multiplies them, and stores the result. Each one of those
steps takes time and energy. But what if all you wanted to do
was multiply a number by 2? If you have a multiplication opera-
tion and you know one of the coefficients is a constant value,
you can reduce this complex operation to a simpler one, saving
you processing time and power. Microcontrollers, unlike FPGAs,
don’t have the smarts to reduce multiplication to addition when
possible, so they have to perform the multiplication operation,
resulting in slower execution speed and more power use.

 FPGAs really shine when it comes to doing things like vector
mathematics computations. Vector math isn’t just for physics
class: Programmers use it whenever they have to perform the
same operation on each one of a large set of numbers. The big
advantage of FPGAs here is that although a microprocessor
would have to treat each number separately — or at best, take
a few numbers at a time — you can program the FPGA to do
many operations and even many different operations simul-
taneously (in parallel). If you have a 128-element matrix, you
can build 128 arithmetic “pipelines” so all of these operations
can execute simultaneously, giving you huge gains in perfor-
mance and power usage.

Often an ASIC or ASSP isn’t the right answer!

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

What’s in an FPGA,
Anyway?

In This Chapter
▶ Investigating the programmable fabric and I/O

▶ Taking a look at upward scaling

▶ Embedding hard IP and integrated CPUs

▶ Tackling the modern design flow

I
f you’re reading this chapter, it’s a safe bet that you may know
what an FPGA is. But if it’s been some time since you learned

about FPGAs, you will be surprised by how they’ve evolved in
recent years to be more than an array of programmable logic
gates. They now include built-in hardware to perform many
common functions right out of the box. This chapter takes you
through what’s really in an FPGA, discusses the future of upward
scaling, and walks you through how a design flow works.

The Basics – Programmable
Fabric and I/O

As the name field-programmable gate array (FPGA) suggests,
FPGAs are, at their core, simply integrated circuits that con-
tain a bunch of logic gates and I/O circuitry. The I/O circuitry
takes in data from a source and spit out data at the other
end into some other system or subsystem.

In Chapter 1, I discuss the building blocks of an electrical
system: logic gates, wires, and registers. At the core of an
electrical system is a flat rectangle of silicon with wires and

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

14 FPGAs For Dummies, Altera Special Edition

transistors that are etched into its surface. These bits of
silicon are known as integrated circuits (ICs).

 Transistors are semiconductor devices usually made from sili-
con. More recently, they have also been made from new materi-
als such as Gallium Nitride (GaN) and Gallium Arsenide (GaAS).
Transistors are used to switch and/or amplify electrical signals
and have at least three connectors (or terminals) that form a
connection to the circuit. Transistors switch electrical signals
by applying an electrical potential energy (voltage) across two
of the terminals, and then applying another potential at the
third terminal, which causes the current to flow from one end
of the transistor to the other across the first two terminals.
When this potential is removed, no current flows through the
circuit. Transistors can also amplify the input power by apply-
ing a voltage or current that causes the power at the output of
the transistor to be greater than that supplied at the input.

Transistors are similar to the valves used in plumbing. When
you apply force to the valve, water flows through a pipe
(a wire in this analogy). When you remove the force on the
valve, it closes and water stops flowing through the pipe. The
same is true for transistors. When you apply electrical poten-
tial (force) to the transistor, electricity flows through it and
out the other end onto the wires connecting the circuit. When
you remove this electrical potential, electricity stops flowing.

History of transistors
Historians credit the development
of the transistor in 1947 to John
Bardeen, Walter Brattain, and
William Shockley. What makes the
transistor such a remarkable inven-
tion is that it ushered in the age
of solid state electronics and the
integrated circuit. Transistors are
much, much, smaller and use much
less power than the vacuum tubes
they replaced. The reduction in size
allowed for smaller devices, which
ultimately means you can carry a

phone around with you that plays
the latest cat video from YouTube
while getting driving directions to
your favorite French-Vietnamese
fusion restaurant! If you are feeling
really nerdy, you can delight and
amaze your friends at the next party
by explaining to them that the word
transistor was coined by John R.
Pierce as a combination of the term
transfer resistor. This tidbit may also
come in handy for fabulous cash and
prizes on Jeopardy!

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 2: What’s in an FPGA, Anyway? 15
Boolean algebra is really numeric operations on input values of
true or false or expressed numerically as 1 or 0. Logic gates are
the devices that are used to perform the various Boolean algebra
operations on input values of 0 or 1. Because transistors switch
electrical signals by applying or removing an electrical potential,
you can arrange a group of transistors in such a manner as to
create a logic gate that can perform one of the Boolean algebra
operations like AND, OR, or NOT (see Chapter 1 for a discussion
of Boolean algebra operations).

The core of an FPGA is simply an array of these logic gates and
wires etched into an integrated circuit in a way that allows you
to reconfigure them. Or, if you prefer, take a look at the analogy
I present in Chapter 1 that compares FPGAs to LEGO pieces
arranged on a table.

So really, an FPGA, in its simplest form, is a big array of col-
orful rectangles placed on a rectangular table that can be
arranged in the manner desired by its owner (or in the case of
FPGAs, its programmer).

Moore’s Law
Moore’s Law originated from an
article in the April 19, 1965, issue
of Electronics Magazine called
“Cramming More Components onto
Integrated Circuits.” In this article,
Moore accurately predicted that cir-
cuit complexity would double every
two years while the wafer (the flat
silicon disk on which the integrated
circuit is built) would remain con-
stant. By the end of the 1970s, the
most popular formulation of Moore’s
Law became the limit for the number
of transistors on the most complex
chips. Amazingly, Moore’s prediction
still holds true nearly 50 years after
its initial publication!

Simply put, Moore’s Law states that
because you can shrink the size of
the features you inscribe on the inte-
grated circuit by 30 percent every 18
to 24 months, you can double the tran-
sistor count. Moore’s Law does make
things more complex and difficult.
For example, adding all these wires
and transistors to a smaller surface
area of silicon makes it very difficult
to maintain the placement integrity
of the original circuit design, after
processing, into the etched wafer of
silicon. The projected images appear
with oddities such as lines wider or
narrower than designed, or distortions
such as rounded corners on the wafer.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

16 FPGAs For Dummies, Altera Special Edition

In the past, designers found only simple uses for FPGAs, such
as simple interfacing to computers and to create basic logic
functions. Beyond their use as devices for field programming
interfaces, designers didn’t do much else with them.

Scaling Upward
Designers have it covered when it comes to eliminating the
problems that occur when etching circuits with what may
add up to be millions of wires and transistors on a small
wafer of silicon.

Another problem that occurs when scaling chip design to add
millions, or even billions, of transistors is that it becomes
very difficult to pinch off the transistors (cut off the electri-
cal potential) because the transistors are so small. As chip
design continues to double the number of transistors on a 30
percent smaller wafer, the design becomes more complex and
the transistors leak more power, meaning that the chip even
burns power when sitting around not doing any computa-
tions. The transistors also get weaker, so more work has to be
done just to keep the chip from running slower.

Could the end of scaling be near? Designers already pack so
much power into such a small area on a chip that it is possible
for a chip to melt its own wires! Designers are getting close to
the point where they’ll have to fundamentally change how they
design transistors from a planar arrangement to a FinFET. A
FinFET is a nonplanar double-gate field-effect transistor (FET)
built on a silicon wafer designed to reduce the surface area a
transistor occupies. The FinFET gets its name from the thin sili-
con “fin” that wraps the conducting channel of the transistor.

What does the future hold for chip designers? In the not-
so-distant past, a chip had about 20 transistors. In the next
few years, chips will be built containing billions of transistors.
Before these chips can be designed, designers will have to start
making transistors that stand up on their edges, different kinds
of wires, and many other changes. Chip design will be on the
edge of unexplored territory — chips will be able to diagnose,
compensate, and heal themselves. Indeed, these are exciting
times for chip designers as they continue to extend Moore’s
Law into the future!

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 2: What’s in an FPGA, Anyway? 17
 The application of Moore’s Law has certainly been a winner

for integrated circuits. Today’s integrated circuits may con-
tain millions or even billions of transistors and can perform
very complex operations such as high-speed data networking,
advanced 3D graphics computations, or streaming and play-
ing movies across the Internet in high definition! Moore’s Law
doesn’t only apply to integrated circuits — its application has
revolutionized FPGAs as well.

Hard IP and Integrated CPUs
Today, implementing a design in an FPGA can provide the same
energy efficiency and speed as the same design implemented
in an ASIC on the same size of hardware. This is true in part
because FPGA vendors have embedded large blocks of
predefined hardware into the FPGA to implement frequently
needed functions, from standard interfaces to whole
microcomputers.

The fact that FPGAs are field programmable gives them an
edge over ASICs because the same hardware can be repro-
grammed in response to changes in design. If the design
uses an ASIC, changing the design requires the hardware to
be scrapped and new hardware has to be built to reflect the
design changes. More designers are choosing FPGAs over
ASICs for their designs. If you’re thinking about using FPGAs in
your designs, read on to find out more about the design flow
for designing with FPGAs while taking full advantage of their
embedded hardware.

Modern Design Flow of FPGAs
FPGA designs often start with what are called reference designs,
which represent a technical blueprint of a system that is
intended for others to copy. Reference designs contain the
essential elements of the system. Reference designs are
typically done by applications engineers as part of a sales
support effort, but the nature of the customer has changed.
Increasingly, reference designs aren’t sales tools — they’re the
product itself!

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

18 FPGAs For Dummies, Altera Special Edition

Creating a functional
block diagram
So what does a system design flow look like? Figure 2-1 shows
a simple block diagram of a high-level system design flow.

Courtesy of Altera Corporation.

Figure 2-1: System design flow.

The system design flow appears in the form that you’d expect.
First you define the requirements, and then create the archi-
tecture of the system you define. Here, you determine the
components you need to implement your design. Next, you
implement the system using the architecture you planned out.
Finally, you verify that the system meets all the requirements.

Figure 2-1 shows a simplistic view of the system design flow.
The Create Architecture and Implement System steps are
where the action is. Here is where you’ll determine what the
architecture of the system looks like and build the hardware
and software applications required to implement the system
design. You can further break out the steps between Define
Requirements and Verify into a separate flow that can be called
the software application flow. Figure 2-2 adds the steps of the
software application flow to the system design flow in Figure 2-1.

Courtesy of Altera Corporation.

Figure 2-2: System design flow with the software application flow.

The lighter colored blocks between Define Requirements and
Integrate & Verify System make up the application flow of the
design. In this step, you write and verify the applications

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 2: What’s in an FPGA, Anyway? 19
software and then integrate those applications with the hard-
ware. After the applications are integrated with the hardware,
you integrate and verify that the system meets the design
requirements.

The application flow is all about developing the applications
needed to implement the system. Designers often must
consider how their systems will run on different platforms
depending on what type of application the system will be
deployed into (for example, automotive, communications, and
so on). Often, different application domains have established
software and hardware standards to ensure that applications
developed for these systems perform common functionality
and can work with each other.

 Think about an Android-based phone, for example. The Android
operating system contains common features that can be used
by all applications developed for it and uses a platform standard
for such things as accessing the camera and sharing data among
applications. Designers often include what is typically called mid-
dleware into their applications. Middleware is a layer of software
that doesn’t implement the core functionality of the product, but
instead, provides a layer that implements an industry standard
or protocol. Designers create middleware to isolate their appli-
cation logic from logic that is specific to a particular standard
or development platform (for instance, Android or Apple iOS).
Middleware can often be reused in many other applications.
Another important feature of adding middleware to applications
is that it makes it possible to incorporate future standards and
platforms easily into your application. Figure 2-3 shows how
middleware development fits into the system design flow.

Courtesy of Altera Corporation.

Figure 2-3: Middleware in the system design flow.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

20 FPGAs For Dummies, Altera Special Edition

Replacing functional blocks
with existing IP
Looking at the block diagrams, it seems like your work is cut
out for you when it comes to building and integrating your
applications into the system. But FPGA manufacturers have
learned over the years that most systems require many of
the same types of functionality. Functionality such as net-
work data I/O, graphics processing, and microprocessors is
commonly needed, so it doesn’t make sense for each system
designer to design and build these components. It makes
much more sense for these types of functionality to be avail-
able out of the box. In recent years, FPGA manufacturers have
been including such common functionality or intellectual
property (IP) into their products. This IP can be in the form
of hardware built into the chip, software provided to the user,
or — just for FPGAs — hardware designs that the user can
drop into the programmable logic. Now, you can replace parts
of the blocks in the block diagram with existing IP — the work
that has already been done for you. Figure 2-4 shows an illus-
tration of where existing IP fits into the design diagram.

Courtesy of Altera Corporation.

Figure 2-4: Replacing functional blocks with existing IP.

The solid rectangle shows the effect of using hardware and
programmable-logic IP: Many of the Implement Hardware
and Verify Hardware steps are done for you. In addition, the
dashed rectangle in Figure 2-4 shows where the existing IP fits
into the design diagram. Here it replaces part of the work in
the writing of applications and middleware with functionality
implemented for you.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 2: What’s in an FPGA, Anyway? 21

Coding the missing blocks
Existing IP can only go so far by implementing some common
functionality, for example, accessing GPS data for an on-board
navigation system. The rest of the field programming work
of the FPGA is left up to the designer. After all, you want it to
exactly fit your applications, right?

Programming modern FPGAs is much easier than you might
think. The steps to programming an FPGA include identify-
ing any blocks of the design that you actually want to design
yourself, choosing a hardware description language (HDL),
writing the code in a text editor, synthesizing (more on that
later) the design, placing and routing the design, then loading
the design onto the FPGA itself. After the design is loaded
onto the FPGA, it may require a cycle of debugging to fix errors
in functionality.

 You’ll come across the word bug in the technical jargon of
software and hardware development. A bug is an inexplicable
defect in computer software that produces an incorrect or
unexpected result. The term debugging refers to eliminating
defects until the whole design runs according to its required
functionality.

Once you’re happy with how the design works, the next steps
are to document the program and finally ship it to the customer.

Verilog is a common HDL used in creating designs for FPGAs.
Verilog has a syntax very similar to the commonly used,
general-purpose programming language called C. But instead
of defining a program to run on a computer, Verilog, VHDL,
and other hardware description languages describe the

The real bug in bug
If you’re really into word origins,
then you’ll be fascinated to know
that the first use of the word “bug”
in software was attributed to com-
puter pioneer Grace Hopper. In 1947,

she uncovered a moth trapped in a
relay of an electromechanical com-
puter and referred to the resulting
glitch in the program execution as
a bug!

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

22 FPGAs For Dummies, Altera Special Edition

hardware — the interconnected network of gates, registers,
and wires — that the designer wishes to create in the FPGA.
You write your Verilog programs in the proper syntax using a
simple text editor.

After you write the HDL design, the next step is to compile the
HDL design. In FPGA programming, a synthesis tool takes the
HDL design as input and converts it into a network of gates,
registers, and wires configured to implement the functions the
HDL describes. Then additional processes select which particu-
lar gates, registers, and wires to use in the FPGA and create a
programming file that will configure the FPGA when it powers up.

So your HDL code gets mapped directly into the physical hard-
ware elements available on the selected FPGA device. In micro-
processor programming, program logic gets mapped into a list
of processor instructions that the processor must execute. So
it is quite a different — and wonderful — feature that you can
convert your logic directly to silicon gates for execution.

During this process, the design tools may also link into the
design of the hard IP — the predefined blocks of hardware
already embedded in the FPGA. In the modern tool flow, you
only have to specify whether you want to use hard or soft IP
blocks and how you want them connected. You only need to
write HDL code for any blocks that aren’t already available as IP.

Verifying the system design
After you compile your code, test it before deploying onto your
FPGA. In the old days, designers tested their designs for much
simpler programmable-logic chips by simply trying them out
to see if they worked. But because of the complexity of modern
FPGAs, plugging-and-trying as an early debug tool isn’t feasible.

Debugging an FPGA design is typically done in a simulation envi-
ronment. Simulators are software applications that (as you might
expect) simulate the behavior of your design. But the simulation
is done using software where you can see what the individual
registers are doing before you put the design into the FPGA.

Debugging and verifying code is typically repeated until you’re
certain that the HDL code works as intended. Most developers
use what is called a testbench as a tool to verify that the FPGA

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 2: What’s in an FPGA, Anyway? 23
will work when attached to the real world. A testbench can be
a mix of software simulation and actual hardware — designed
by you — that makes up a model of the system that will contain
your FPGA. Most FPGAs contain tens of thousands or hundreds
of thousands of gates, so you can’t test all of them. Instead, a
testbench focuses on the most meaningful gates that contain
the critical areas of your design. Simulation environments help
you to isolate particular areas and add debugging aids in those
areas so you can get your design working the way you want.

 Any good software application requires extensive documenta-
tion that tells the customer or end user exactly how the appli-
cation is defined, and brings up any caveats, warnings, and so
on. The documentation requirements are the same for FPGAs
as in any microcontroller-based programming; of course, the
contents will differ greatly.

Mapping the system into
FPGA hardware
In the end, the bits that have been synthesized must be loaded
into the FPGA to implement the gates of the system.

Like any system, if the hardware is correct, the design can
evolve to include bug fixes and feature enhancements. The
ability to edit the HDL code allows for design, debug, and veri-
fication in the same environment, which helps you get a faster
time-to-market using an FPGA.

Trying out the design
in the system
Once the design is programmed into the hardware, ensure
that everything works as it is supposed to. What does work-
ing really mean for an FPGA? This stage is sometimes called
closure. And, as with any hardware device, certain perfor-
mance criteria are expected. In many applications, power
consumption is an important design criterion. Think of your
smartphone, for example. Smartphones have strict power
requirements so that they can maintain an acceptable battery
life. You wouldn’t want your smartphone to be a power hog;
otherwise you’ll find your battery dead after a short period of

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

24 FPGAs For Dummies, Altera Special Edition

use. Speed is another important criterion. Test to ensure each
net (wire connection between gates) meets its timing limit.
Finally, ensure that every clock and power pin is connected
on your FPGA.

In the FPGA design-tool environment, you can enter your
design, select blocks of IP to include, and convert the design
into the hardware elements that actually exist in the FPGA.
Then, while the design is still in software and easy to test,
you can verify that it works as expected, that it works at the
required speed, and you can even estimate how much power
the design will consume.

Now comes the magic: You can load your tested design into the
target FPGA on your prototype board, power up the system, and
verify that everything is working as expected. You now have
custom hardware to exactly fit your requirements — months
before you would receive the first sample chips of an ASIC.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

FPGAs as Systems
In This Chapter
▶ Understanding FPGAs as functional building blocks

▶ Absorbing the system into the FPGA with SoCs

T
his chapter shows how FPGAs are used in the real world. An
FPGA is really a functional building block of a system, and

as FPGAs grow larger, the whole digital system can be absorbed
into an FPGA, making it a system on a chip (SoC).

In this chapter, I examine the concept of an electronic system.
Then I take you through the bewildering complexity of SoCs in
a high-end car.

FPGAs in System Design
This section gives you a deeper look into the system design
process and how FPGAs play an important role (I talk about
some of the basics in Chapter 2).

Figure 3-1 shows the traditional model of system design. The
diamond shapes you see between each block represent decision
points in the process.

Courtesy of Altera Corporation.

Figure 3-1: System design with decision points.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

26 FPGAs For Dummies, Altera Special Edition

 The decision points in the system design are the points where
you have to ask some questions such as:

 ✓ What does the system have to do? This question appears
during the requirements definition phase and is the fun-
damental question. The answer to this question is often
provided by the product manager in coordination with the
customer and drives the requirements gathering phase.

 ✓ Can I use my existing design with changes? Often,
an existing system design is in place that, with some
changes, may meet the requirements of the system.

 ✓ How much of the system can I leave in software? This
is an important question asked during the design and
implementation phase. The amount of the system that
can be left in software determines what types of hard-
ware can be used. FPGAs and microcontrollers can be
used to program the software.

 ✓ How much hardware can I buy off the shelf? Many times,
a functional block of your system design may already be
implemented in a commercially available hardware device
(known as off-the-shelf). If that’s the case, it may be more
economical to purchase this hardware, or license it as IP,
rather than implement the design in software or design
custom hardware.

 ✓ Does it work yet? This is the fundamental question during
the integration stage and must be answered “Yes” before
the system can be deployed. If the answer is “No” then you
must keep iterating over the design and implementation
until you get it right.

In Figure 3-2, you can see that during the requirements defini-
tion, designers must consider the constraints on their design,
such as performance, power consumption, and size. The
functions of the system are also important — including which
functions are visible, invisible, or locked. Finally, designers
run experiments on their design. This process leads to early
system estimation, which indicates the actual size and scope
of the system and what it will take to implement.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: FPGAs as Systems 27

Courtesy of Altera Corporation.

Figure 3-2: Defining system requirements.

The design process for FPGAs is an iterative one — you
start with an idea of the system and then refine the idea into
definitions of transactions. A transaction might include input,
processing, and output. You can think of a transaction just like
a bank transaction where you hand money over to the teller,
the teller takes the money, and then adds the money to your
account. Basically, a transaction is anywhere in the system
where information is shared between two components of
the system.

 After you define the transactions, you implement them, and
then verify that they work and meet the functions and con-
straints you established at the start. This is another iterative
process that requires deciding which functions will be done
in hardware and which in software, which can be done with
existing IP, and which will have to be newly written.

Automotive Electronics
Systems with FPGAs

This section examines a real-world example of a system. In
fact, you may have driven this system to work this morning. I
show how SoCs — many of which could be FPGAs — fit into a
modern car.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

28 FPGAs For Dummies, Altera Special Edition

Drivetrain
Consider the components that make up a car’s drivetrain, and
how under regulatory, safety, cost, and feature pressures they
have all become electronic:

 ✓ Engine: Electronics in the engine control the fuel, igni-
tion, and valves based on power demand, emissions,
smoothness, starting cycle, and strategy.

 ✓ Transmission: Modern transmissions include electrical
systems to control gear ratio, shifting sequence, signals
based on speed, power demand, and engine rotations
measured in revolutions per minute (RPMs).

 ✓ Brakes: For safety, electronic systems — not just the
pedal on the floor — control the braking force.

 ✓ Steering: High-end automobiles have sophisticated
power steering features that control the ratio, feedback,
and angle of steering based on many inputs.

 ✓ Tires: In recent years, advancements in automobiles
include electronic sensors that monitor tire pressure
so that drivers know when to inflate their tires if
needed — improving both fuel economy and tire life.

Infotainment
Infotainment is a nifty word used to describe the information
and entertainment systems in automobiles. Many cars have
sophisticated electronic infotainment features such as:

 ✓ Displays and controls: Today’s cars have electronically
controlled speedometers and other readouts.

 ✓ Entertainment: Modern cars have advanced features
such as digital AM/FM radio, satellite radio, CDs, and dig-
ital audio players where you can store your entire music
library. There is sometimes also a digital video system
that will keep your kids happy during those long road
trips!

 ✓ Comfort: Now, the driver and passengers each have access
to the lighting and multizone climate control systems so
they can be as hot or cool as they want without impacting
others in the same car.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: FPGAs as Systems 29
 ✓ Access control: Cars today come equipped with power

locks, doors, windows, and security systems. There are
also common safety features like window and door lock
controls that keep your children from opening doors and
windows while the car is in motion.

 ✓ Passive safety: Safety systems know how many occupants
are where in the car, and make appropriate preparations if
they sense an impending collision.

Driver assistance
Driver assistance includes some of the coolest technology that
has come along in automotive design in recent years. It makes
cars safer than ever! Driver assistance systems include:

 ✓ Lights, back-up, lane-exit, and collision avoidance: Cars
often come equipped with advanced lighting systems,
indicators, and heads-up displays that warn the driver
when the car swerves outside of the lane or is about to
collide with another vehicle or object.

 ✓ Sensors including cameras, lasers, and radar: These sen-
sors are used to allow drivers to see in their blind spot
when backing up or changing lanes, which drastically
reduces the chances of an accident.

Importance of FPGAs
Today, most automotive systems depend on low-cost micro-
controllers that operate at the point of sensing or action. The
trend in automotive design is for consolidation of systems and
for systems to become more autonomous. As systems become
more sophisticated, their processing and memory require-
ments skyrocket. Consider sensor fusion with Kalman filters.

 Sensor fusion is the combining of sensory data from disparate
sources so that the resulting information is better than what
would be obtained from these sources individually, such as
stereoscopic vision (the calculation of depth information
by combining two-dimensional images from two cameras at
slightly different viewpoints). A Kalman filter is an algorithm
that uses a series of measurements observed over time that
contain noise (random variations) and produces estimates

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

30 FPGAs For Dummies, Altera Special Edition

that are more precise than those based on a single measure-
ment alone. Kalman filters are commonly used for guidance,
navigation, and control of vehicles.

As automobile systems consolidate, microcontrollers are being
absorbed into SoC implementations. As these systems get
smarter and more autonomous, SoCs are evolving into
multicore processor/DSP clusters. In order to control the
explosive growth in the number of models, changes during the
model year, evolution in bus architectures, and the continuous
demand for better security, the trend is moving toward SoC
FPGAs being the only viable answer to solve these design chal-
lenges and needs for frequent updates.

 The car is only one example of how systems become more
dependent on electronics, the electronics become more com-
plex and change more rapidly, and the need grows for SoCs
that can change even during a model year. This same pattern
shows up across a huge range of products with complicated
behavior, from aircraft and trains to electric power grids to
even home appliances. Yes, even your toaster.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

The Future: Heterogeneous
Computing and OpenCL

In This Chapter
▶ Looking at heterogeneous computing

▶ Examining OpenCL

I
ndustry trends are driving FPGAs toward playing a big
part in the heterogeneous computing paradigm. Open

Computing Language (OpenCL) is an industry standard
development platform used to program FPGAs in a hetero-
geneous environment.

This chapter walks you through why heterogeneous computing
is necessary and the emergence of new languages for creating
software to execute on them.

Heterogeneous Computing
Inside data centers, one of the major trends is a shift in the com-
puting architecture: from multicore CPUs to heterogeneous com-
puting. Heterogeneous computing refers to systems that use more
than one type of processor to perform specialized processing
capabilities. An example of a heterogeneous computing system
is a graphics rendering system that uses a CPU and a graphics
processing unit (GPU) to render 3D graphics on a computer.
GPUs are especially adept at rendering 3D scenes and perform-
ing mathematically intensive computations on large datasets.
CPUs are used in the background to perform operating system

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

32 FPGAs For Dummies, Altera Special Edition

and data networking tasks. Heterogeneous computing is becom-
ing more of the standard as systems consolidate and must work
well with different processor architectures used in each.

 Parallel computing is the capability of computers to perform
many calculations simultaneously based on the principle that
large problems can be broken down into smaller problems
and then solved concurrently (in parallel). Parallel comput-
ing comes in many different forms: bit-level, instruction level,
data, and task-based. Parallel computing is no longer just
the domain of high-performance computing like IBM’s chess-
mastering Big Blue. As power consumption has become more
of a design factor in embedded electronics, parallel computing
has become the dominant paradigm in computer architecture,
most commonly seen in the form of multicore processors.

Data parallelism focuses on the idea of separating data
across multiple processors so that it can execute in parallel.
Multicore processors often do this by farming out multiple
instances of a program to each of the processors to execute
these instructions simultaneously. Task parallelism has to do
with a processor farming out computer code blocks known as
threads across different processors to execute in parallel.

Why Use OpenCL on FPGAs?
The need for heterogeneous computing is leading to new pro-
gramming languages to exploit the new hardware. One example
is the OpenCL first developed by Apple, Inc. OpenCL is a frame-
work for writing programs that execute across heterogeneous
platforms consisting of CPUs, GPUs, DSPs, FPGAs, and other
types of processors. OpenCL includes a language for develop-
ing kernels (functions that execute on hardware devices) as
well as application programming interfaces (APIs) that define
and control the various platforms. OpenCL allows for parallel
computing using task-based and data-based parallelism.

In the last decade or so, processor hardware frequencies have
hit a so-called power wall, which prevents higher frequencies
from being achieved on processors. When’s the last time in
recent years have you heard CPU manufacturers like Intel
advertise the performance of their processors based on clock
speed? Instead, CPU manufacturers have been busy adding

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 4: The Future: Heterogeneous Computing and OpenCL 33
more processing cores to their CPUs and enhancing their
instruction sets so several instructions can execute at the
same time, speeding up program execution without requiring
faster clock frequencies to do so. Software companies have
been busy as well, developing software that allows chunks
of computer code known as threads to execute in true paral-
lel fashion. The threads are executed on separate processor
cores instead of the pseudo-parallelism of the past where
threads weren’t executed on separate cores but time-sliced by
the operating system to appear to be running in parallel.

 FPGAs are inherently parallel, so they’re a perfect fit with
OpenCL’s parallel computing capabilities. FPGAs give you an
alternative to the typical data or task parallelism by offering a
pipeline parallelism where tasks can be spawned in a push-pull
configuration with each task using different data from the previ-
ous task with or without host interaction. OpenCL allows you
to develop your code in the familiar C programming language
but using the additional capabilities provided by OpenCL.
These kernels can be sent to the FPGAs without your having to
learn the low-level HDL coding practices of FPGA designers.
Generally, there are several benefits for software developers
and system designers to use OpenCL to develop code for FPGAs:

 ✓ Simplicity and ease of development: Most software
developers are familiar with the C programming lan-
guage, but not low-level HDL languages. OpenCL keeps
you at a higher level of programming, making your
system open to more software developers.

 ✓ Code profiling: Using OpenCL, you can profile your code
and determine the performance-sensitive pieces that
could be hardware accelerated as kernels in an FPGA.

 ✓ Performance: Performance per watt is the ultimate goal
of system design. Using an FPGA, you’re balancing high
performance in an energy-efficient solution.

 ✓ Efficiency: The FPGA has a fine-grain parallelism archi-
tecture, and by using OpenCL you can generate only the
logic you need to deliver one fifth of the power of the
 hardware alternatives.

 ✓ Heterogeneous systems: With OpenCL, you can develop
kernels that target FPGAs, CPUs, GPUs, and DSPs seam-
lessly to give you a truly heterogeneous system design.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

34 FPGAs For Dummies, Altera Special Edition

 ✓ Code reuse: The holy grail of software development is
achieving code reuse. Code reuse is often an elusive goal
for software developers and system designers. OpenCL
kernels allow for portable code that you can target for
different families and generations of FPGAs from one
project to the next, extending the life of your code.

Today, OpenCL is developed and maintained by the technology
consortium Khronos Group.

 Most FPGA manufacturers provide Software Development Kits
(SDKs) for OpenCL development on FPGAs.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

Five Applications of FPGAs
In This Chapter
▶ Taking a look at some real-world applications of modern FPGAs

F
PGAs have come a long way since the old days, when
implementing a complex system with an FPGA meant that

you had to do lots of programming of the logic gates. Today’s
FPGAs come with built-in capabilities, such as network inter-
faces, memory blocks, and even ARM cores. At Altera, those
with built-in ARM cores are known as SOCs, a recognition of the
role these powerful chips are playing. The field-programmable
part is now less than half of the chip area. This chapter highlights
how FPGAs are used in several areas of industry and technology.

Single-Device Motor Control
Motors and motor control are commonplace in any industrial
design. When you go to any factory or industrial complex,
you’ll find a variety of widely different machines with one
thing in common — they’re powered by motors. Most motor
control systems are designed with microcontroller technology.
However, microcontrollers can fall short of the performance
demands of sophisticated motor-control algorithms such as
direct torque control (DTC) or sensorless field oriented control
(SFOC), for example. DSPs have been used in the past to get
around that problem, but are usually unable to cost-effectively
match an FPGA when it comes to high performance. You can
build a flexible, scalable, and high-performance motor control
system in a single SoC FPGA (see Figure 5-1).

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FPGAs For Dummies, Altera Special Edition 36

Courtesy of Altera Corporation.

Figure 5-1: Motor control.

One example is using an SoC FPGA to plug into a motor con-
trol module that comes with two independently controlled
DC motors and a simple optical feedback system. The SoC
FPGA includes a built-in processor that manages the feedback
and control signals so that the two motors can move inde-
pendently. The processor reads the data from the feedback
system and runs an algorithm to synchronize the movement
of the motors as well as control their rotation speeds. By
using an SoC FPGA, you can build your own IP that can be
easily customized to work on other motor controls. There are
several advantages to using an SoC FPGA for motor control
instead of a microcontroller:

 ✓ System integration: Fewer parts lead to less material costs,
lower power requirements, and fewer reliability challenges
by integrating industrial networking, safety, power stage
interfaces, and DSP control algorithms on a single device.

 ✓ Scalable performance: You can use a single scalable
platform across an entire product line. SoC FPGAs allow
you to achieve higher performance with faster and more
advanced control loops that can increase efficiency and
machinery lifetime.

 ✓ Functional safety: As automation takes more of the
responsibility for running potentially dangerous equip-
ment, regulators are requiring the machine-control elec-
tronics to guarantee that no harm can result. With an SoC
FPGA and the right design flow, you can reduce time and
effort complying with these government and industry
safety regulations.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Five Applications of FPGAs 37

Television Broadcasting
Television broadcasters use a serial digital interface (SDI) stan-
dard to transmit uncompressed digital video on 75-ohm coaxial
cable (the same kind that hooks your cable/satellite receiver or
antenna to your television). With every improvement to video
images, the standard has had to bump up its capacity. The
latest standard is called the 3-Gbps (3G)-SDI, and is capable
of moving 4K ultraHD signals around the studio. With all this
change, here’s another area where FPGAs really shine! FPGA
solutions come with a core transceiver that can function on
all three SDI rates (SD SDI, HD SDI, and 3G-SDI) on the same
transceiver.

 But much else has changed in the studio as well. New digital
techniques help edit the video stream, improve or correct
picture quality, and compress the image for transmission
over cables or satellite links. The latest compression stan-
dard, H.265 (also known as the High-Efficiency Video CoDec)
slashes the number of bits necessary to encode a movie or TV
program. But it requires an enormous amount of computation.
Many equipment vendors are finding that the best solution to
pack the power into an SoC while responding to the pressure
for rapid evolution — there is that combination again — is an
FPGA. See Figure 5-2.

Courtesy of Altera Corporation.

Figure 5-2: Broadcast.

Wireless Data: 3G and 3GPP
LTE Infrastructure

Nothing has changed how people live and work more than
the arrival of 3G wireless technology. It allows you to carry
around those phones that not only let you make calls from
wherever you are but also allow you to browse the web and

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FPGAs For Dummies, Altera Special Edition 38
post Twitter updates from anywhere! The latest technology
migration is from the 3G standards to the 3.5G networks,
which include high-speed packet access (HSPA) and 3rd
Generation Partnership Project (3GPP) long-term evolution
(LTE) standards.

 Cellular wireless networks based on the 3GPP LTE standard
are expected to provide a true mobile broadband experience
that surpasses the existing high-speed packet access technol-
ogy of 3G systems. The key requirements for LTE base stations
and mobile operators are scalable form factor, low power
consumption, low cost, and programmability as they strive to
reduce their expenses while expanding and upgrading their
networks. Manufacturers are also looking to increase produc-
tivity and time-to-differentiate as keys to introduce successful
products and get a competitive edge.

Many FPGAs now come equipped with built-in low-latency intel-
lectual property (IP) for LTE networks as well as productivity
enhancing tools to allow manufacturers to leverage FPGAs
advantages of performance, power, price, and productivity
to focus their efforts on product differentiation and not on
the mechanics of programming the nuts and bolts of LTE
infrastructure. See Figure 5-3.

Courtesy of Altera Corporation.

Figure 5-3: LTE.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Five Applications of FPGAs 39

Automotive Driver Assistance
Cameras

One of the big areas of growth in the automobile industry
is the explosion of technology-driven features. Even lower-
priced automobiles come equipped with fancy gadgets
like navigation systems, video entertainment systems, and
cameras.

Driver assistance and backup cameras are some of the most
important safety innovations and help make cars safer than
ever. The peace of mind that comes with knowing that all is
clear behind your car when backing up is priceless.

Forward camera systems are made up of high-speed video
processing, complex sensor fusion, and real-time data analy-
sis that enable the automobile to perform corrective action
in cases like when the driver nods off and veers into another
lane. Forward cameras do their job by integrating with dif-
ferent sensors such as radar and laser sensors. Each type of
sensor is different in how it provides data, posing a design
challenge for multiple architectures.

 Traditional DSP processors or microcontrollers don’t have the
power to do real-time video processing and analytics at the
same time. Moreover, HDR or high dynamic range, which is a
requirement for the camera to see equally well into both bright
and dark areas of a scene, is a necessity for video analytics to
be accurate. HDR processing can as much as triple the demand
for video signal processing power as compared to a traditional
non-HDR camera, taking the performance requirements out of
reach for all but the most expensive DSPs. Instead of DSPs or
microcontrollers, you can integrate the entire camera system
in a single, low-cost SoC FPGA. You can optimize system per-
formance by developing hardware parallel processing engines
using FPGA logic and integrating with software algorithms run-
ning on the hard processor system of an SoC FPGA. Figure 5-4
shows a diagram of an SoC FPGA as part of an automobile
vision system.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FPGAs For Dummies, Altera Special Edition 40

Courtesy of Altera Corporation.

Figure 5-4: The FPGA in an automobile vision system.

High-Performance Computing
The high-performance computing (HPC) market is one of
the fastest growing areas of computing today. It is extremely
important in many industries, such as financial, medical imaging,
bioscience, military, and many others that can benefit from the
logic and memory resources in FPGAs to develop application-
specific coprocessors. Think about financial markets, for exam-
ple, and the mind-boggling amounts of data that go from place
to place for all of those trades, forecasts, and price calculations.
Fractions of a cent matter in these transactions, so high-speed,
accurate floating-point arithmetic is absolutely essential.

In HPC, floating point is a numerical representation where a
series of digits or bits represent real numbers. Applications
require floating-point data types for more accurate results
than integer calculations can produce. As mentioned in
Chapter 1, floating-point operations require more processor
instructions, and hence more power. Common floating-point
applications include:

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Five Applications of FPGAs 41
 ✓ Fast Fourier transform (FFT)

 ✓ Radar

 ✓ Bioscience

 ✓ Finite impulse response (FIR)

 ✓ Financial options trading

 ✓ Matrix math (used extensively in 3D graphics and image
processing)

 ✓ Molecular dynamics

 ✓ Seismic and medical imaging

 A coprocessor is a computer processor that is used to supple-
ment the functionality of the primary or central processor
(CPU). Coprocessors are typically used to perform floating-
point arithmetic, signal processing, string processing, encryp-
tion, or I/O interfacing to peripheral devices. Coprocessors
take on computationally intensive operations, freeing the CPU
to service the core functions of the computer.

All HPC markets require coprocessors to provide a productiv-
ity, performance, and power advantage, and in some cases,
FPGA coprocessors accelerate algorithms by a factor of 100.

The good news is that Altera FPGAs build in not just DSP func-
tions, but floating-point hardware, so that programmers don’t
have to convert their programs from floating-point format to
integer format before running them on an FPGA-accelerated
server. This capability is a huge boon in categories such as:

 ✓ Appliances: Database and financial market acceleration.

 ✓ Functions: Random number generators for financial
markets, one-million point FFT for military and signal
processing applications.

 ✓ Algorithms: SRCs CARTE, Impulse, and AutoESL system
generating algorithms.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FPGAs For Dummies, Altera Special Edition 42

Case study: The Monte Carlo
Black-Scholes method

One of the most important bench-
marks in financial markets is the com-
putation of option prices via the Monte
Carlo Black-Scholes method. In finan-
cial terms, an option is a contract that
gives the buyer the right, but not the
obligation, to buy or sell an asset at a
specified price on or before a given
date. The Monte Carlo Black-Scholes
technique is based on conducting
random simulations of the underly-
ing stock price and averaging the
expected payoff over millions of differ-
ent paths. The accompanying figure
shows a graphical representation of
this method.

In most computer simulations,
designers use some type of random
number generator to simulate the
data input into the simulation to
model the randomness of the real
system. In the Monte Carlo Black-
Scholes method, modelers typically
use a random generator known as
a Mersenne twister. The Mersenne
twister random number generator is
a very fast and high-quality genera-
tor of pseudorandom numbers — it’s
ideal for simulations. This sequence

of random numbers is fed to an
Inverse Normal Cumulative Density
Function (a probability function to
specify the distribution of random
numbers) in order to produce a
normally distributed sequence of
numbers. These random numbers
are used to simulate the movement
of stock prices using Geometric
Brownian motion (an algorithm com-
monly used to predict stock prices).
At the end of each simulation path,
the call option payoff is recorded and
averaged to produce an expected
value for the payoff. The entire algo-
rithm can be implemented in about

300 lines of OpenCL code that is
portable from an FPGA to a CPU and
GPU. The FPGA solution outperforms
both the CPU and GPU in power, per-
formance, and efficiency as shown in
the accompanying figure.

In the figure, the FPGA is compared
with a CPU and GPU in three crite-
ria: power consumption, the number
of simulations per second, and the
rate of power-efficiency simulations
per second. FPGAs are inherently

Courtesy of Altera Corporation.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Five Applications of FPGAs 43

parallel — meaning they can be
coded to break complex calculations
into computations that can be done in
parallel. FPGAs can do more opera-
tions in parallel than can CPUs and

GPUs, resulting in much faster execu-
tion and increased power efficiency,
both of which are essential in elec-
tronic systems design.

Courtesy of Altera Corporation.

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FPGAs For Dummies, Altera Special Edition 44

These materials are © 2014 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s
 ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Icons Used in This Book
	Beyond the Book

	Chapter 1: FPGAs for Everyone
	So Why Would You Need an FPGA, Anyway?
	Examining an FPGA
	The building blocks of an FPGA
	Explaining FPGAs creatively

	Comparing FPGAs and ASICs
	Costs and flexibility
	Design time risk reduction versus speed

	FPGAs Are Surprisingly Easy to Use
	Hard IP
	Parallel operation and order reduction

	Chapter 2: What’s in an FPGA, Anyway?
	The Basics – Programmable Fabric and I/O
	Scaling Upward
	Hard IP and Integrated CPUs
	Modern Design Flow of FPGAs
	Creating a functional block diagram
	Replacing functional blocks with existing IP
	Coding the missing blocks
	Verifying the system design
	Mapping the system into FPGA hardware
	Trying out the design in the system

	Chapter 3: FPGAs as Systems
	FPGAs in System Design
	Automotive Electronics Systems with FPGAs
	Drivetrain
	Infotainment
	Driver assistance
	Importance of FPGAs

	Chapter 4: The Future: Heterogeneous Computing and OpenCL
	Heterogeneous Computing
	Why Use OpenCL on FPGAs?

	Chapter 5: Five Applications of FPGAs
	Single-Device Motor Control
	Television Broadcasting
	Wireless Data: 3G and 3GPP LTE Infrastructure
	Automotive Driver Assistance Cameras
	High-Performance Computing

	Wiley End User License Agreement

